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Abstract. We prove that there is a motion from any
convex polygon to any convex polygon with the same
counterclockwise sequence of edge lengths, that pre-
serves the lengths of the edges, and keeps the poly-
gon convex at all times. Furthermore, the motion is
“direct” (avoiding any intermediate canonical configu-
ration like a subdivided triangle) in the sense that each
angle changes monotonically throughout the motion. In
contrast, we show that it is impossible to achieve such
a result with each vertex-to-vertex distance changing
monotonically.

1 Introduction

This paper is concerned with linkages modeled by poly-
gons (primarily in the plane), whose vertices represent
hinges and whose edges represent rigid bars. A fun-
damental question about such linkages is whether it
is possible to reach every polygon with the same se-
quence of edge lengths by motions that preserve the
edge lengths. Several papers have shown that the an-
swer to this question is yes for various types of poly-
gons; we call this a universality result. If edges are
allowed to cross each other, then this is true in every
dimension [11, 12]. If edges are not allowed to cross,
universality does not hold in general for polygons in 3-
D [2, 5], but has been shown for polygons in the plane
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and motions in 3-D [1, 2], for polygons and motions in
the plane [8], for polygons in 3-D with simple projec-
tions [4], and for all polygons in 4-D and higher dimen-
sions [7].

All of these papers show universality by proving that
every polygon can be convezified, that is, moved to a
convex (planar) polygon while preserving edge lengths.
Convex polygons are used as an intermediate state; be-
cause motions can be reversed and concatenated, all
that remains is to show that a convex polygon can be
moved to every other convex polygon with the same
counterclockwise sequence of edge lengths. This fact is
established in [11] when edges are allowed to cross. No
proof has been published for the case in which edges
cannot Cross.

The basic idea in the proof in [11] of universality
of convex polygons is to show how to reconfigure ev-
ery convex polygon into another intermediate state,
a “canonical triangle.” In this paper, we show that
this intermediate state can be avoided. Specifically,
a convex polygon can be moved into any other con-
vex polygon with the same counterclockwise sequence
of edge lengths in such a way that each vertex angle
varies monotonically with time (either never increasing
or never decreasing). In this sense, the motion goes di-
rectly from the source to the destination. Our motion
is also of the simplest type possible [3]: it can be de-
composed into a linear number of moves, each of which
changes only four joint angles at once.

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce some basic notation that we will use
throughout the paper. Section 3 proves the main the-
orem mentioned above, using an old lemma of Cauchy
and Steinitz. We conclude in Section 4 by showing an
example in which a different type of monotonicity can-
not be achieved.

2 Notation

For a polygon P, we denote its vertices by v1,...,v, in
counterclockwise order, its edges by e; = (v;,viy1), and
its edge lengths by ¢; = |e;| = |vi — vit1|- Throughout,
index arithmetic is modulo n.

A convex configuration of edge lengths (positive real
numbers) {1, ..., £, is a convex polygon with those edge



lengths in counterclockwise order. A well-known result
characterizes the edge lengths for which convex config-
urations exist:

Lemma 1 (Lemma 3.1 of [11]) The edge lengths
Ly, ..., L, admit a conver configuration precisely if £; <

> jzily for alli.

A motion or reconfiguration is a continuous function
from the unit interval [0, 1] (representing time) to a con-
figuration, where each configuration is a polygon with
the same counterclockwise sequence of edge lengths.
An angle-monotone motion is a motion in which each
vertex angle is a monotone function in time.

In the following, we split our results into two compo-
nents: theorems give the theoretical result, and propo-
sitions give the additional computational result.

3 Reconfiguring between Two
Convex Configurations

Consider two convex configurations C' and C' of the
same sequence of edge lengths. We think of C' as the
source configuration and C' as the destination config-
uration. Label each angle of C' by + if it needs to get
bigger in order to match the corresponding angle in C’,
by — if it needs to get smaller, or by 0 if they already
match.

This set up is exactly what arises in the proof of
Cauchy’s theorem about the rigidity of convex poly-
hedra [6, 9], except that in Cauchy’s application the
polygon is on the sphere. His key lemma about alter-
nations in such +,—,0 labelings is what we need as
well. Cauchy’s original proof of this lemma (in 1813)
had an error, noticed and corrected over a century later
by Steinitz in 1934 [15].

Lemma 2 (Cauchy-Steinitz Lemma) In o +,—,0
labeling that comes from two distinct convex configura-
tions, there are at least four sign alternations.

Proof (Sketch): Because the configurations are dis-
tinct, not all labels are 0. By circularity, the number of
alternations between + and — (ignoring 0’s) is even. It
cannot be zero, because there is no motion of any poly-
gon that increases or decreases all angles. It cannot be
two, because then there is a chain of increasing angles
and a chain of decreasing angles; the former chain spec-
ifies that the ends of the chain should get further apart,
whereas the latter chain specifies the opposite. It is this
last part of the argument that needs careful analysis;
for details, see [15] for Steinitz’s original (complicated)
proof, [9] for a simpler proof due to Issac J. Schoenberg,
or [13] for another elementary proof. O

The idea is to take vertices wv;,v;,vi,v; in cyclic
order around the polygon, whose angles are labeled

+,—,+,— in that order, and flex the quadrangle de-
fined by those vertices until one angle matches the de-
sired value in C'. See Figure 1.
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Figure 1: Applying a quadrangle motion to a convex poly-
gon by taking vertices labeled +, —, 4+, — in that order.

Now we need a lemma about reconfiguring convex
quadrangles:

Lemma 3 Given a conver quadrangle vi,vs,vs,vs4,
there is a motion that decreases the angles at vi and
v, and increases the angles at v and vy. The motion
can continue until one of the angles reaches 0 or .

Proof: We consider the following viewpoint: wv; is
pinned to the plane, and v3 moves along the directed
line from v, to vs (see Figure 2). The motions of
vy and vy are determined by maintaining their dis-
tances to v; and wsz. Applying Euclid’s Proposition
1.25 [10] to triangle wy,v2,vs, because |v; — v3| is in-
creasing, so is the angle at vo. Similarly, the angle at
vy is increasing throughout the motion. Because no
angle goes past 0 or 7, we maintain a convex quadran-
gle throughout the motion, so by the Cauchy-Steinitz
lemma (Lemma 2), there must be at least four sign al-
ternations when compared to any future quadrangle we
will visit. This proves that the angles at v; and vs are
decreasing throughout the motion. O

We can prove our main theorem:

Theorem 1 Given two convex configurations C,C" of
the same edge lengths fy,...,¢,, there is an angle-
monotone motion from C to C' that involves O(n)
moves each of which changes only four vertex angles
at once.

Proof: Consider configuration C. By Lemma 2, we
can find vertices v;, v;, Vi, v; in cyclic order around the
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Figure 2: Moving a convex quadrangle as in Lemma 3.

polygon, whose angles are labeled +, —, +, — in that or-
der; see Figure 1. By specifying the subchains between
these vertices to move rigidly, we obtain a convex quad-
rangle. Move this quadrangle according to Lemma 3
until one of the four angles matches the angle in C'.
(No angle will ever reach 0 or m because of our stop-
ping condition.) Repeat this process until all angles
match. The result is a sequence of motions from C to
C', with at most n moves, because each motion changes
the label of an angle from + or — to 0, and that label
persists. O

Proposition 1 Computing the motion in Theorem 1
can be done in O(n) time on a pointer machine with
real numbers.

Proof: The first part is to maintain the vertices of the
quadrangle, v;,v;,vk,v;, throughout the motion. We
maintain four consecutive blocks I, J, K, L of the same
sign; specifically, we maintain the first and last vertex
in each block. This can be found initially in linear time
by scanning along the polygon’s vertices in order. The
desired vertices v;,v;, vy, v; are identified with the first
vertex in the corresponding block. When the label of
one of them switches to 0, it and the block’s first vertex
advance to the next element in the block. If this was the
last element (the block is empty), we make the following
modifications. If I becomes empty, we advance it to the
block of +’s after L. Similarly, if L becomes empty, it
retreats to the block before I. If K becomes empty, it
advances to the block after L, the blocks J and L merge
to produce a new J, and L advances to the block after
K. The case of J becoming empty is symmetric.

The second part is to apply the quadrangle motions
from Lemma 3. This involves computing the time at
which the quadrangle motion stops, and then updat-
ing the coordinates. These computations can be done
analogous to Lemma 7 of [3]. Basically, we compute
the times at which each angle would match the desired
angle in €', and take the minimum of these times. At
worst, each time can be computed by solving a degree-

four polynomial, which reduces to an arithmetic expres-
sion involving square and cube roots. O

4 Conclusion

We have shown that an angle-monotone motion be-
tween any two convex configurations of a common se-
quence of edge lengths can be computed in linear time.
An interesting consequence is that any polygon can be
moved to a unique inscribed configuration [14], in which
the vertices are cocircular, a natural generalization of
regular polygons.

It is interesting to note that we cannot hope for
a distance-monotone motion between any two convex
polygons, in which every distance between a pair of
vertices varies monotonically with time (like [8]). An
example is shown in Figure 3. Because the dotted lines
are the same length in both configurations, these dis-
tance must be preserved throughout the motion; in
other words, the chains v;,vs,v3 and vy, vs,vg must
move rigidly. The problem is thus reduced to moving
a quadrangle v, v3, v4, Vg, which can be moved in only
two different ways. Only one motion decreases |v; — v4|
and increases |vs —vg| as desired, but then the distance
|va — v5| increases and later decreases. Specifically, the
distance in the middle configuration is more than 0.6%
larger than the (equal) distances in the left and right
configurations.

Finally, we report on a related result about reconfig-
uring convex polygons. This paper has shown how to
reach any convex configuration from any other by using
four-joint rotations in the plane. In the full version of
this paper, we will also show that a motion is possible
using a sequence of restricted moves through three di-
mensions. Namely, a pivot divides the chain into two
subchains, keeping one rigid, and rotating the other
by some amount around the line through the two end-
points of the subchains. As a consequence of proving
that convex polygons can be reconfigured arbitrarily
via pivots, we obtain universality results about recon-
figuring general (nonconvex) polygons via pivots.
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Figure 3: (Left and right) An example for which a distance-monotone motion is impossible. (Middle) The transition
between |vy — v;| increasing and decreasing.
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