
- 32 -

Robot Motion, Ablex Publishing Corporation, Norwood, New Jersey, 1987.

[St91] Stolfi, J.,Oriented Projective Geometry: A Framework for Geometric Computations,
Academic Press, Inc., San Diego, 1991.

[St86] Stone, M. G., “A mnemonic for areas of polygons,”American Mathematical Monthly,
June-July, 1986, pp. 479-480.

[Su86] Sugihara, K.,Machine Interpretation of Line Drawings, MIT Press, Cambridge, 1986.

[Su87] Sugihara, K., “An approach to error-free solid modelling,” Notes,Institute for Mathe-
matics and its Applications, University of Minnesota, 1987.

[SY87] Schwartz, J. and Yap, C. K., eds.,Algorithmic and Geometric Robotics, Lawrence Ear-
lbaum Assoc., Hillsdale, New Jersey, 1987.

[To80] Toussaint, G. T., “Pattern recognition and geometrical complexity,” Proc. Fifth Inter-
national Conf. on Pattern Recognition, Miami Beach, December 1980.

[To85] Toussaint, G. T., “A historical note on convex hull finding algorithms,”Pattern Reco-
gnition Letters,vol. 3, January 1985, pp. 21-28.

[To85b] Toussaint, G. T., “Movable separability of sets,” inComputational Morphology, G. T.
Toussaint, ed., North-Holland, 1985, pp.335-375.

[To86] Toussaint, G. T., “An optimal algorithm for computing the relative convex hull of a set
of points in a polygon,” Signal Processing III: Theories and Applications, Proc. EUR-
ASIP-86, Part 2, North-Holland, September 1986, pp. 853-856.

[To89] Toussaint, G. T., “Computing geodesic properties inside a simple polygon,” Revue
D’Intelligence Artificielle,Vol. 3, No. 2, 1989, pp. 9-42.

[To91] Toussaint, G. T., “Efficient triangulation of simple polygons,” The Visual Computer,
vol. 7, No. 5-5, September 1991, pp. 280-295.

[To92a] Toussaint, G. T., “A new look at Euclid’s second proposition,”The Mathematical In-
telligencer, in press, 1992.

[To92b] Toussaint, G. T., “Un nuevo vistazo a la segunda proposición de Euclides,”III Colo-
quio Internacional de Filosofía e Historia de las Matemáticas, México City, June 22-
26, 1992.

[TSRB71] Toregas, C., Swain, R., Revelle, C., and Bergman, L., “The location of emergency ser-
vice facilities,”Operations Research, vol. 19, 1971, pp. 1363-1373.

[Wh85] Whitesides, S., “Computational geometry and motion planning,” inComputational
Geometry, G. T. Toussaint, ed., North-Holland, 1985, pp. 377-427.

[Wh92] Whitesides, S., “Algorithmic issues in the geometry of planar linkage movement,”The
Australian Computer Journal, vol. 24, No. 2, May 1992, pp. 50-58.

[Wo85] Wood, D., “An isothetic view of computational geometry,” inComputational Geo-
metry, G. T. Toussaint, ed., North-Holland, 1985, pp. 429-459.

- 31 -

simple polygon,”Information Processing Letters,vol. 8, 1979, pp. 201-205.

[Mi88] Milenkovic, V., “Verifiable implementations of geometric algorithms using finite pre-
cision arithmetic,” Tech. Rept. CMU-CS-88-168, Carnegie Mellon University, July
1988.

[Mo1672] Mohr, G.,The Danish Euclid, Amsterdam, 1672.

[Mo85] Mortenson, M. E.,Geometric Modeling, John Wiley & Sons, 1985.

[MP69] Minsky, M. and Papert, S.,Perceptrons: An Introduction to Computational Geometry,
M.I.T. Press, 1969.

[MRB91] Melter, R. A., Rosenfeld, A. and Bhattacharya, P., eds.,Vision Geometry, American
Mathematical Society, 1991.

[Ni81] Niven, I., Maxima and Minima Without Calculus, The Mathematical Association of
America, 1981.

[NS79] Newman, W. M. and Sproull, R. F.,Principles of Interactive Computer Graphics,
McGraw-Hill, New York, 1979.

[O’R87] O’Rourke, J.,Art Gallery Theorems and Algorithms, Oxford University Press, 1987.

[OTU87] Ottmann, T., Thiemt, G., and Ulrich, C., “Numerical stability of geometric algorithms,”
Proc. 3rd Symposium on Computational Geometry, Waterloo, June 1987, pp. 119-125.

[PS85] Preparata, F. P. and Shamos, M. I.,Computational Geometry, Springer-Verlag, New
York, 1985.

[Ra60] Ransom, W. R.,Can and Can’t in Geometry, J. Weston Walch, Portland, Maine, 1960.

[RT90] Robert, J. M. and Toussaint, G. T., “Computational geometry and facility location,”
Proc. International Conference on Operations Research and Management Science,
Manila, The Philippines, Dec. 11-15, 1990, pp. B-1 to B-19.

[SA48] Stark, M. E. and Archibald, R. C., “Jacob Steiner’s geometrical constructions with a
ruler given a fixed circle with its center,” (translated from the German 1833 edition),
Scripta Mathematica, vol. 14, 1948, pp. 189-264.

[Sc92] Schipper, H., “Determining contractibility of curves,”Proc. 8th ACM Symposium on
Computational Geometry,Berlin, June 10-12, 1992, pp. 358-367.

[Sh75] Shamos, M. I., “Geometric complexity,”Proc. 7th ACM Symposium on the Theory of
Computing, 1975, pp. 224-233.

[Sh78] Shamos, M. I., “Computational geometry,” Ph.D. thesis, Yale University, 1978.

[Sm61] Smogorzhevskii, A. S.,The Ruler in Geometrical Constructions, Blaisdell, New York,
1961.

[SSH87] Schwartz, J., Sharir, M. and Hopcroft, J., eds.,Planning Geometry and Complexity of

- 30 -

8th ACM Symposium on Computational Geometry, Berlin, June 10-12, 1992, pp. 33-42.

[HHK88] Hoffmann, C. M., Hopcroft, J. E., and Karasick, M. S., “Towards implementing robust
geometric computations,”Proc. 4th Annual Symposium on Computational Geometry,
Urbana, Illinois, June 1988, pp. 106-117.

[Ho70] Honsberger, R.,Ingenuity in Mathematics, Random House, Inc., 1970.

[Ho76] Honsberger, R.,Mathematical Gems II, Mathematical Association of America, 1976,
pp. 104-110.

[HT85] Hildebrandt, S. and Tromba, A.,Mathematics and Optimal Form, Scientific American
Books, Inc., 1985.

[II88] Imai, H. and Iri, M., “Polygonal approximations of a curve - formulations and algo-
rithms,” inComputational Morphology, G. T. Toussaint, ed., North-Holland, 1988, pp.
71-86.

[Ka61] Kazarinoff, N. D.,Geometric Inequalities, The Mathematical Association of America,
1961.

[Ka88] Karasick, M., “On the representation and manipulation of rigid solids,” Ph.D. thesis,
School of Computer Science, McGill University, Montreal, 1988.

[Kl71] Klee, V., “Shapes of the future,”American Scientist, vol. 59, January-February 1971,
pp. 84-91.

[Kl39] Klein, F., Elementary Mathematics from an Advanced Standpoint: Geometry, Dover
Publications, Inc., 1939.

[Kl89] Klein, R.,Concrete and Abstract Voronoi Diagrams, Springer-Verlag, 1989.

[Ko86] Kostovskii, A., Geometrical Constructions with Compasses Only, Mir Publishers,
Moscow, 1986.

[Kr92] Kreveld, M. van,New Results on Data Structures in Computational Geometry, Univer-
sity of Utrecht, 1992.

[KS92] Karasik, Y. B. and Sharir, M., “Optical computational geometry,”Proc. 8th ACM Sym-
posium on Computational Geometry, Berlin, June 10-12, 1992, pp. 232-241.

[Le02] Lemoine, E.,Geometrographie, C. Naud, Paris, 1902.

[LPS88] Lenhart, W., Pollack, R., Sack, J., Seidel, R., Sharir, M., Suri, S., Toussaint, G., Whi-
tesides, S. and Yap, C., “Computing the link center of a simple polygon,” Discrete &
Computational Geometry, vol. 3, 1988, pp. 281-293.

[LW86] Lee, D. T. and Wu, Y. F., “Geometric complexity of some location problems,”Algo-
rithmica, vol. 1, 1986, pp. 193-212.

[Ma1797] Mascheroni, L.,The Geometry of Compasses, University of Pavia, 1797.

[MA79] McCallum, D. and Avis, D., “A linear time algorithm for finding the convex hull of a

- 29 -

1988, pp. 93-105.

[Du90] Dunham, W.,Journey Through Genius: The Great Theorems of Mathematics, John
Wiley and Sons, Inc., 1990.

[EA81] ElGindy, H. and Avis, D., “A linear algorithm for computing the visibility polygon
from a point,”Journal of Algorithms, vol. 2, 1981, pp. 186-197.

[EM88] Edelsbrunner, H. and Mucke, E., “Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms,”Proc. 4th Annual Symposium on Computa-
tional Geometry, Urbana, Illinois, June 1988, pp. 118-133.

[Ev59] Eves, H., “Philo’s line,”Scripta Mathematica, vol. 26, 1959, pp. 141-148.

[Fe89] Feynman, R. P., “What Do You Care What Other People Think?” Bantam, 1989.

[Fi89] Fiume, E. L.,The Mathematical Structure of Raster Graphics, Academic Press, Inc.,
San Diego, 1989.

[FL67] Freeman, H. and Loutrel, P. P., “An algorithm for the two dimensional hidden line
problem,” IEEE Transactions on Electronic Computers, vol. EC-16, 1967, pp. 784-
790.

[Fo68] Forrest, A. R.,“Curves and surfaces for computer aided design,” Ph.D. thesis, Univer-
sity of Cambridge, 1968.

[Fo71] Forrest, A. R.,“Computational geometry,”Proceedings of the Royal Society, London,
Series A, vol. 321, 1971, pp. 187-195.

[Fo74] Forrest, A. R.,“Computational geometry - Achievements and problems,” inComputer
Aided Geometric Design, Academic Press, New York, 1974, pp. 17-44.

[FVD82] Foley, J. D. and Van Dam, A.,Fundamentals of Interactive Computer Graphics, Add-
ison-Wesley, Reading, MA, 1982.

[FW74] Francis, R. L. and White, J. A.,Facility Layout and Location: An Analytical Approach,
Prentice-Hall, Inc., 1974.

[GH89] Guibas, L. and Hershberger, J., “Optimal shortest path queries in a simple polygon,”
Journal of Computer and System Sciences, vol. 39, No. 2, 1989, pp. 126-152.

[GJ78] Garey, M. and Johnson, D.,Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman and Co., San Francisco, 1978.

[Gr72] Graham, R. L., “An efficient algorithm for determining the convex hull of a planar set,”
Information Processing Letters, vol. 1, 1972, pp. 132-133.

[GY86] Greene, D. H. and Yao, F. F., “Finite-resolution computational geometry,”Proc. 27th
IEEE Symposium on Foundations of Computer Science, Toronto, October 1986, pp.
143-152.

[He81] Heath, T.,A History of Greek Mathematics, Dover, New York, 1981.

[He92] Hershberger, J., “Optimal parallel algorithms for triangulated simple polygons,”Proc.

- 28 -

Algorithms, Addison-Wesley, Reading, Mass., 1974.

[Ak82] Akl, S., “A constant-time parallel algorithm for computing convex hulls,”BIT, vol. 22,
1982, pp. 130-134.

[Ak89] Akl, S., The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood
Cliffs, New Jersey, 1989.

[AS83] Ahuja, N., and Schacter, B. J.,Pattern Models, John Wiley, 1983.

[AT81] Avis, D. and Toussaint, G. T., “An efficient algorithm for decomposing a polygon into
star-shaped pieces,”Pattern Recognition, vol. 13, 1981, pp. 295-298.

[Av87] Avron, A., “Theorems on strong constructibility with a compass alone,”Journal of
Geometry, vol. 30, 1987, pp. 28-35.

[Av90] Avron, A., “On strict strong constructibility with a compass alone,”Journal of Geo-
metry, vol. 38, 1990, pp. 12-15.

[AY90a] Alt, H. and Yap, C. K., “Algorithmic aspects of motion planning: a tutorial, part 1,”Al-
gorithms Review, vol. 1, No. 1, pp. 43-60.

[AY90b] Alt, H. and Yap, C. K., “Algorithmic aspects of motion planning: a tutorial, part 2,”Al-
gorithms Review, vol. 1, No. 2, pp. 61-78.

[Be92] de Berg, Mark,Efficient Algorithms for Ray Shooting and Hidden Surface Removal,
University of Utrecht, 1992.

[BS67] Bass, L. J. and Schubert, S. R., “On finding the disc of minimum radius containing a
given set of points,”Mathematics of Computation, vol. 21, 1967, pp. 712-714.

[BET91] Bhattacharya, B., Egyed, P. and Toussaint, G. T., “Computing the wingspan of a but-
terfly,” Proc. Third Canadian Conference on Computational Geometry, Vancouver,
August 6-10, 1991, pp. 88-91.

[BT91] Bhattacharya, B. and Toussaint, G. T., “Computing shortest transversals,”Computing,
vol. 46, 1991, pp. 93-119.

[Ch75] Chvatal, V., “A combinatorial theorem in plane geometry,”Journal of Combinatorial
Theory, Series B, vol. 18, 1975, pp. 39-41.

[CR81] Courant, R. and Robbins, H.,What is Mathematics? Oxford University Press, 1981.

[Cz91] Czyzowics, J., Egyed, P., Everett, H., Rappaport, D., Shermer, T., Souvaine, D., Tous-
saint, G. T., and Urrutia, J., “The aquarium keeper’s problem,”Proc. ACM/SIAM Sym-
posium on Discrete Algorithms, January 28-30, 1991, pp. 459-464.

[De85] Devroye, L., “Expected time analysis of algorithms in computational geometry,” in
Computational Geometry, G. T. Toussaint, ed., North-Holland, 1985, pp. 135-151.

[DS88] Dobkin, D. and Silver, D., “Recipes for geometry & numerical analysis - Part I: An em-
pirical study,”Proc. 4th Annual Symposium on Computational Geometry, Urbana, June

- 27 -

worth a thousand digits and the development of programming languages helped considerably to
smooth the human-machine interface. But of course a picture is worth a thousand words and hu-
man-machine communication today is done almost exclusively through graphic displays or pic-
tures. Computing has become visual and the foundation of visual computing is computational geo-
metry. I hope this issue gives the reader a taste of the ubiquity, practical relevance and beauty that
characterize computational geometry.

5. Acknowledgments

First I would like to thank Theo Pavlidis for conceiving the idea of this special issue. I thank
all the invited authors for undertaking the task of writing the papers in spite of their busy schedules
and all the referees for taking time off their writing in order to read. I thank Reed Crone, the Exe-
cutive Editor of The Proceedings of the IEEE, for his hospitality and help with the managerial as-
pects of guest editing. I thank Jit Bose for reading a preliminary version of this manuscript and for
making many useful suggestions. Maria Pineda made it all worth while.

6. References

[AHU74] Aho, A. V., Hopcroft, J. E. and Ullman, J. D., The Design and Analysis of Computer

Fig. 3.11 The shaded region in the polygon is the rela-
tive convex hull of the set of points in the polygon.

- 26 -

stricted to the ocean and the islands are the obstacles which must be circumvented.

A fundamental structure that has proved very useful in scenarios such as these relevant to
both facility location and path planning in robotics, is a generalization of the convex hull known
as therelative convex hull (alsogeodesic convex hull). Given a setS of n points inside a simple
polygonP of n vertices, the relative convex hull ofS (i.e., relative toP) is the minimum perimeter
circuit that lies inP and enclosesS (see Fig. 3.11). The relative convex hull of a set of points in a
polygon was first investigated in [To86] where an optimal O(n log n) time algorithm for its com-
putation was given. Since then other similar algorithms with the same time complexity have ap-
peared [GH89], [He92]. For applications of the relative convex hull the reader is referred to [To89].

3.13 Computational Topology

Many fundamental problems in computational geometry have a topological flavor. For
example, given a closed polygonal chain in three dimensional space it is natural to ask whether the
chain is knotted in some way or whether it is “simple.” Inspired by such problems, a new branch
of computational geometry,computational topology has developed in the past few years. For de-
tails and pointers to the small but significant literature on this subject the reader is referred to
[Sc92].

4. Conclusion

When the electronic digital computer was first introduced in the early 1940’s it was used
as a “number cruncher” imitating the purpose of its mechanical calculating predecessors built by
mathematicians such as Blaise Pascal and Gottfried Liebnitz in the 17th century and Charles Bab-
bage in the 19th century. Computing was numerical then andnumerical analysis was the primary
concern of the design and analysis of numerical algorithms for solving equations. However, it is
relatively difficult for human beings to communicate with machines through numbers. A word is

Fig. 3.10 Three star-shaped objects such that
no single object can be moved without dis-
turbing the others but they can be separated if
two of them are moved simultaneously.

can be separated if two of them are moved simul-
taneously each with its own separate direction
and velocity of translation. For a tutorial survey
of this field the reader is referred to [To85b].

3.12 Geodesic Computational Geometry

Consider again the minimax facility loca-
tion problem discussed in section 2 but now as-
sume that transportation is to be carried out by
ship and the customers are coastal cities in a
country such as the Philippines made up of a
large number os islands. In this situation the Eu-
clidean distance between two points is no longer
a useful measure. What we need is thegeodesic
distance, i.e., the length of the shortest path (geo-
desic path) between the two points that avoids
obstacles. In this example the shortest path is re-

- 25 -

the areas in which they have been successfully applied.

3.11 Robotics

No discussion of computational geometry can go very far without mentioning robotics as
one of the main applications even though no contribution in this area appears in this special issue.
There are many sub-problems of robotics which could be mentioned. However we limit ourselves
to three: (1) motion planning, (2) linkages and (3) automated assembly.

In motion planning the typical problem involves a robot modeled as a polygon in two di-
mensions or a polyhedron in three dimensions which must maneuver in space amongst a collection
of obstacles. Here we are usually asked questions such as: can the robot move from point A to point
B without colliding with the objects and if the answer is in the affirmative find the shortest such
path. For the latest results applying computational geometry to such problems the reader is referred
to the books by Jacob Schwartz, Micha Sharir and Chee Yap [SY87], [SSH87] and the tutorial sur-
veys by Helmut Alt, Chee Yap and Sue Whitesides [AY90a], [AY90b], [Wh85].

A linkage is a collection of rigid rods that are fastened together at their endpoints, about
which they may rotate freely. The rods may be connected in a variety of ways. For example, the
rods may form a chain (chain linkage) or a closed polygon (a poligonal linkage). Many fascinating
questions arise with linkages. For example, we may ask: can a poligonal linkage be turned inside
out? For the latest results in this area the reader is referred to the tutorial survey of Sue Whitesides
[Wh92].

Automated assembly is a type of motion planning problem where we consider a collection
of objects and must answer questions about whether the collection can be separated (taken apart)
or brought together into a specified configuration and if so what kinds of motion are guaranteed to
yield an answer. A typical question is whether a collection of objects can be disassembled by mov-
ing only one object at a time. This is always true for convex objects in the plane but shockingly
untrue for convex objects in three dimensions. In Fig. 3.10 is illustrated a configuration of three
star-shaped objects such that no single object can be moved without disturbing the others but they

Fig. 3.9 (a) A dot pattern. (b) The minimal-spanning-tree of the points in (a). (c)
The relative-neighbourhood-graph of another dot pattern.

(a) (b) (c)

- 24 -

borhood graph (RNG) are two proximity graphs that have been well investigated in this context.

 A spanning tree of a set of points is a tree connecting all the points constructed by adding
edges between pairs of points. The length of a tree is the sum of the lengths of all the edges in the
tree. Theminimal spanning tree is the tree that has the minimal length over all spanning trees. It
has attractive properties for computer vision and for this reason has been widely employed. Con-
sider the dot pattern in Fig. 3.9 (a). How would you connect these points so that the resulting figure
describes the perceptual structure so evident to humans in the dot pattern? Well the minimal span-
ning tree of the dot pattern is shown in Fig. 3.9 (b) and it clearly does an admirable job on this pat-
tern. However the minimal spanning tree imposes tree structure on every dot pattern it “sees.” On
the cyclic dot pattern of Fig. 3.9 (c) it fails because it leaves a gap somewhere. The relative neigh-
borhood graph defined below is much more powerful than the minimal spanning tree in these kinds
of problems.

The lune ofxi andxj, denoted by Lune(xi, xj), is defined as the intersection of the two discs

centered atxi andxj each with radius equal to the distance between xi andxj. The relative neigh-

borhood graph is obtained by joining two pointsxi andxj of S with an edge if Lune(xi, xj) does not

contain any other points ofS in its interior. The relative neighborhood graph of a dot pattern that
is not a tree is shown in Fig. 3.8 (c). Note that the structure shown in Fig. 3.9 (b) is also the relative
neighborhood graph. By generalizing the shape of Lune(xi, xj) one obtains generalizations of the

relative neighborhood graph. These graphs have not only found applications in computer vision but
in many other areas as well. In the last paper of this issue Jerzy Jaromczyk and Godfried Toussaint
provide a survey of results on relative neighborhood graphs and their generalizations and point out

Fig. 3.8 Decomposing thecomputer vision problem into sub-problems.

Real World

Transducer

(Camera)

Digital Image

Image
Processing
(smoothing,
sharpening)

Feature
Extraction
(shape
analysis)

 Decision
 Rule

Description
 of
Real World

Image Segmentation

- 23 -

ferential equations with the finite-element method.

In the eighth paper in this issue, Vijay Srinivasan, Lee Nackman, Jun-Mu Tang and Siavash
Meshkat show how some tools developed in the field of computational geometry can be used to
design new automatic mesh generation techniques that have some advantages over traditional
methods.

3.10 Computer Vision

3.10.1 Introduction

Computer vision has flourished now for some forty years as a sub-discipline of artificial
intelligence and hundreds of books are readily available on the subject and will not be mentioned
here. Relevant to this special issue are the first two books that are the fruit of the marriage between
computer vision and computational geometry and these are the monographs by Ahuja & Schacter
[AS83] and Sugihara [Su86].

It is useful to decompose the computer vision problem into a series of sub-problems that
are usually tackled sequentially and separately in some order such as that illustrated in Fig. 3.8.
The purpose of a computer vision program is to analyze a scene in the real world with the aid of
an input device which is usually some form of transducer such as a digital camera and to arrive at
a description of the scene which is useful for the accomplishment of some task. For example, the
scene may consist of an envelope in the post office, the description may consist of a series of num-
bers supposedly accurately identifying the zip code on the envelope, and the task may be the sort-
ing of the envelopes by geographical region for subsequent distribution. Typically the camera
yields a two-dimensional array of numbers each representing the quantized amount of light or
brightness of the real world scene at a particular location in the field of view. The first computa-
tional stage in the process consists of segmenting the image into meaningful objects. The next stage
usually involves processing the objects to enhance certain of their features and to remove noise of
one form or another. The third stage consists of feature extraction or measuring the “shape” of the
objects. The final stage is concerned with classifying the object into one or more categories on
which some subsequent task depends. Computational geometry can contribute significantly to all
these sub-problems. Robert Melter, Azriel Rosenfeld and Prabir Bhattacharya have recently edited
an excellent collection of papers devoted precisely to the application of computational geometry
to different aspects of all these sub-problems [MRB91].

3.10.2 Proximity Graphs and The Shape of a Set of Points

In some contexts such as the analysis of pictures of bubble-chamber events in particle phys-
ics the input patterns are not well described by polygons because the pattern may consist essentially
of a set of disconnected dots. Such “objects” are calleddot patterns and are well modeled as sets
of points. Thus one of the central problems in shape analysis is extracting or describing the “shape”
of a set of points. LetS={x1, x2,...,xn} denote a finite set of points in the plane. Aproximity graph

on a set of points is a graph obtained by connecting two points in the set by an edge if the two points
are close, in some sense, to each other. The minimal spanning tree (MST) and the relative neigh-

- 22 -

hull should be a convex polygon of one thousand vertices. A typical implementation of a typical
convex hull algorithm on the other hand will yield a convex polygon with perhaps only 950 verti-
ces! This illustrates the disconcerting problem of numerical robustness of geometric algorithms, a
primary concern to the programmers and users of geometric programs.

Numerical computational geometry deals with the design of numerically robust algorithms
for solving geometric problems [DS88], [Mi88]. Several different approaches to this problem are
emerging. Edelsbrunner and Mucke [EM88] describe a technique which they call simulation of
simplicity that simplifies correctness proofs of geometric algorithms by suggesting a uniform
framework with which to deal with degeneracies. For alternate approaches see also [GY86],
[HHK88] and [OTU87]. Of particular relevance to computer graphics is the work of Karasick
[Ka88] and Sugihara [Su87] who consider numerical computational geometry in the context of sol-
id modelling.

In the seventh paper in this issue Kokichi Sugihara and Masao Iri present a numerically sta-
ble algorithm for constructing Voronoi diagrams, no doubt the single most important geometric
structure in computational geometry that has a wide range of applicability across many disciplines.
For an in-depth treatment of Voronoi diagrams and its many generalizations the reader is referred
to the book by Rolf Klein [Kl89].

3.9 Geometric Modeling

Geometric modeling refers to the process of generating geometric models of real objects or
dynamic processes that can be stored in the computer with the goal of either design (CAD), man-
ufacturing (CAM) or process simulation. Not surprizingly there are a variety of sub-problems in
geometric modeling where computational geometry plays an important role. For a comprehensive
treatment of this field the reader is referred to the book by Michael Mortenson [Mo85]. One of the
most important problems in geometric modeling is the automatic generation of a mesh inside a
polygon. This also forms a fundamental and indispensable tool for solving systems of partial dif-

Fig. 3.7 A set of isothetic rectangles and
the contour (bold lines) of their union.

- 21 -

[Ak82]. Of course it may be totally infeasible to build a computer with O(n3) processors commu-
nicating with each other. Parallel computational geometry deals with the trade-off problems be-
tween the number of processors used in a parallel machine and the time taken by the parallel ma-
chine to find the solution to a geometric problem.

In the fifth paper of this issue Mikhail Atallah provides a survey of techniques used for
solving geometric problems on parallel machines. These techniques rely heavily on the methodol-
ogy of the design and analysis of parallel algorithms in general. For an excellent introduction into
this topic the reader is referred to the excellent book by Selim Akl [Ak89].

3.6.2 Neural-Network Computational Geometry

We should mention that the classic work on neural networks by Minsky and Papert [MP69]
falls into the domain of parallel computational geometry as well. The accent here however is on
the ability of such parallel computers (neural networks) to “learn” to recognize certain geometric
properties of the input data. In this sense neural network research and computational geometric
probing have much in common.

3.6.3 Optical Computational Geometry

We close this section by mentioning that another parallel approach to computational geo-
metry that is radically different from those approaches discussed so far, usesoptical computers.
The complexity analysis of optical algorithms involves the appropriate definition of optical prim-
itives. For details on this new and potentially revolutionary development in computational geo-
metry the reader is referred to [KS92].

3.7 Isothetic Computational Geometry

Isothetic computational geometry (alsorectilinear computational geometry) deals with
input data such as line segments and polygons in which all the edges are either vertical or horizon-
tal. This restriction of the input often greatly simplifies the algorithms for solving geometric prob-
lems. Furthermore, in some applications areas such as image processing and VLSI design the data
considered are predominantly isothetic polygons. For a survey of isothetic computational geometry
the reader is referred to [Wo85].

Perhaps the most important application of isothetic computational geometry is to VLSI and
within this field one of the most fundamental problems is the so calledContour-of-a-Union-of-
Rectangles problem. In this problem we are given a set of isothetic rectangles in the plane and it is
required to compute the boundary of the union of the rectangles (see Fig. 3.7). In the sixth paper
of this issue Diane Souvaine and Iliana Bjorling-Sachs provide a comparative study of three well
known algorithms for a generalized version of this problem paying special attention to practical
considerations.

3.8 Numerical Computational Geometry

Consider the following input to a convex hull algorithm. Generate one thousand points on
the boundary of a given circle. Then compute the convex hull of these points. Clearly the convex

- 20 -

doesp is in the convex polygon, otherwise it is not. Ifpi, pi+1 is a lower edge we test ifp lies above
the line throughpi, pi+1.

A similar approach is used on the left half-lines ifp lies to the left of V. The special cases
whenp lies above (or below) all the half-lines are taken care of in a similar manner. Therefore with
this approach we can determine if a point lies inside a convex polygon ofn vertices using only
O(logn) primitive operations. If the point lies outside of the convex hull then of course theupdat-
ing procedure is not yet finished as we must modify the convex hull by disconnecting part of the
old boundary and adding two new edges to the new one as illustrated in Fig. 3.6 (b). Using analo-
gous techniques to those described above this can also be done in O(logn) operations [PS85].

Let us now change the scenario so that instead of having only one new point to insert, new
data points are continually arriving indefinitely. In order to continue to benefit from our pre-pro-
cessed data structure so that we may continue to insert new points in O(logn) operations we must
also update the data structure. Such data structures are referred to asdynamic and this sub-disci-
pline of computational geometry is referred to asdynamic computational geometry. Furthermore,
in fully dynamic situations we want not only to support insertions of new data points as discussed
above but alsodeletions of old data points. Some thought on this problem will quickly reveal that
deletion is a much more difficult problem.

In the fourth paper of this issue Yi-Jen Chiang and Roberto Tamassia provide a tutorial sur-
vey of this area which has important practical applications in circuit layout, computer graphics and
computer-aided design. As pointed out in the short description above this area depends heavily on
the design of clever data structures. For the latest results on data structures for computational geo-
metry the reader is referred to the excellent book (actually a Ph.D. thesis) by Marc van Kreveld
[Kr92].

3.6 Parallel Computational Geometry

3.6.1 Networks of Sequential Computers

In the previous discussion on models of computation it was tacitly assumed that the models
weresequential, i.e., that all the primitive operations required to obtain a solution to a problem
were executed one after the other. It was also pointed out that for some problems, if the input is
very large, the time taken for the execution of the entire algorithm may be prohibitive. One is nat-
urally led to the question: if instead of using one machine (processor, computer) on which primitive
operations are executed one after the other, we used a collection ofk computers that all work on
the problem at the same time, how much faster can we solve the problem. Such computers are
calledparallel computers. Because each computer is only solving part of the problem and the com-
puters must communicate with each other in order not to duplicate work and “stitch” the partial
solutions obtained by each computer into a complete solution, the algorithms used by parallel com-
puters are different from those used by sequential computers. Such algorithms are calledparallel

algorithms. Remember for example the convex hull algorithm described above that required O(n3)
primitive operations to find the convex hull ofn points. On a sequential computer such an algo-

rithm requires O(n3) units of time. However, if we use O(n3) computers (simple processors) as our
massive parallel computer then the convex hull ofn points can be computed inone unit of time

- 19 -

ations. Note that using the “Big O” notation convention we have that O((n+1)3) = O(n3). Not sur-
prisingly this is a rather wasteful approach. A much more efficient method would modify the ex-
isting convex hull to reflect the introduction of the new pointp. For example, we could first test
whether the new point lies in the convex hull of the original data set. If so the new convex hull is
the same as the old one and nothing more need be done. The obvious next question is: how fast can
we tell whether a pointp is inside a convex polygon ofn sides? First note that the edges of the con-
vex hull come in two varieties: theupper edges and thelower edges. Recall that we assumed for
simplicity of discussion that no two points have the samex coordinate and hence no edge is verti-
cal. An edge is an upper edge if the interior of the convex hull lies below the line through the edge.
An edge is a lower edge if the interior of the convex hull lies above the line through the edge. Clear-
ly, a pointp is in the convex hull if, and only if, it lies below all the lines through the upper edges
and above all the lines through the lower edges. Therefore we can determine if a pointp is inside
a convex polygon ofn sides by using the algorithm described in the introduction to test the relative
position of a point with respect to a line. This approach yields an O(n) algorithm for testing point
inclusion in a convex polygon. However, we can do much better than that if we do somepre-pro-
cessing of the convex polygon and store it in an appropriatedata structure.

First pick an arbitrary point O in the interior of the polygon. This can be done by taking the
arithmetic mean of any three vertices of the polygon. Then construct half-lines starting at O and
passing through every vertex of the polygon as illustrated in Fig. 3.6 (a). Consider the vertical line
V through O. This line divides the half-lines into two groups: those to the right of V and those to
the left of V. Assumep lies to the right of V and consider the half-lines to the right of V. Because
the polygon is convex all these half-lines occur insorted order by slope as we traverse the ordered
vertices of the polygon. Therefore by storing these half-lines in asorted array we can applybinary
search to determine in only O(logn) operations the line immediately below our pointp. Similarly,
we can applybinary search to determine in O(logn) operations the line immediately above our
point p. Once we know between which pair of adjacent half-lines our point lies a simple test will
tell us if it is inside the polygon. Assume we have determined thatp lies betweenLi andLi+1 as in
Fig. 3.6 (a). Then ifpi, pi+1 is an upper edge we test ifp lies below the line throughpi, pi+1. If it

Fig. 3.6 Updating the convex hull by inserting a new
pointp (a) inside the old hull and (b) outside the old hull.

(a) (b)

p

V

O

p

pi+1

pi

Li+1

Li

- 18 -

a considerable improvement in the speed of the algorithm.

3.4.2 Ray Tracing, Polygonal Approximation and Polygon Triangulation

Three other fundamental problems in computer graphics are: (1) ray-tracing, (2) polygonal
approximations of a curve and (3) triangulating polygons. Here also computational geometry has
recently made significant contributions [Be92], [II88], [To91].

3.4.3 Computational Geometry and Computer Graphics

That computational geometry and computer graphics have influenced each other has been
obvious particularly with respect to the hidden line and surface removal problems. Computer
graphics makes practical problems known to the computational geometry community and compu-
tational geometry often provides faster algorithms. It is expected that computational geometry will
have many other dramatic improvements to the standard algorithms used in computer graphics.
Computational geometry also provides new ways for graphics programmers to think about their
problems and to do their job [Fi89], [St91]. In the third paper in this issue David Dobkin explores
life at the interface of these two fields.

3.5 Dynamic Computational Geometry

Consider again the problem of computing the convex hull of a set of points in the plane. Let

us say you were given an input data set of n points and you computed the convex hull with O(n3)
primitive operations using the algorithm described in section 2.5. Assume now that you are given
an additional point p that was accidentally left out of the original data and told that you need the
convex hull of the entire collection of n+1 points. In other words you are asked to update the con-
vex hull of the n points by inserting a new point. One obvious approach is to disregard all the work
you have done on the original n points and to apply the algorithm once again from scratch to the

n+1 points. This in effect means that you are inserting one new point using O(n3) primitive oper-

Fig. 3.5 The portion of the gallery visible (shaded portion) with camera C.

C

- 17 -

paying special attention to results obtained since the publication of O’Rourke’s book.

3.4 Computer Graphics

3.4.1 The Hidden Line Problem

Consider the art gallery of Fig. 3.4 again where four cameras (A, B, C and D) are installed
to “see” the entire gallery. You may be interested in determining exactly which sections of the gal-
lery are visible with a single camera, say C. Such a region, referred to as thevisibility region from
point C is illustrated in Fig. 3.5 as the shaded region. Determining this visibility region is equiva-
lent to removing the un-shaded portions of the polygon hidden from camera C and is known in the
computer graphics literature as thehidden line problem. Of course in computer graphics we are
interested even more in the three dimensional version of this problem known as thehidden surface
removal problem. In a typical setting we are given a geometrical description of a collection of ob-
jects in space (stored in the computer) and if a pointV in space is specified as the location of a view-
er, it is required to display the objects as they would be seen from pointV with the hidden portions
of the objects removed. This is one of the many crucial problems that must be solved as part of the
obstacles on the road towards the major goal of computer graphics: that of creating visual images.
A variety of other problems occur in computer graphics and the reader is referred to standard text
books for details [FVD82], [NS79]. However, many of these problems such as the hidden line and
hidden surface problems have benefitted considerably from the field of computational geometry.
Consider for example the two-dimensional hidden line problem illustrated in Fig. 3.5. One stan-
dard algorithm used for solving this problem is the one due to Freeman and Loutrel [FL67] devel-
oped more than ten years before Shamos’ thesis marking the alleged birth of computational geo-
metry. Freeman and Loutrel did not provide a complexity analysis of their algorithm in terms of

“Big O” notation but their algorithm runs in time O(n2), wheren is the number of sides of the poly-
gon, under the usual assumptions made in computational geometry. Using the tools developed for
the design of algorithms in computational geometry, ElGindy and Avis [EA81] were able to design
an algorithm for this problem that runs inoptimal time, i.e., O(n). Since their seminal discovery
others have also discovered algorithms with this time complexity. Whenn is large this represents

Fig. 3.4 Four cameras mounted at A, B, C, and D are
sufficient to guard this gallery.

A

B

C

D

- 16 -

two illustrated in Fig. 3.3. If your gallery has a convex shape (Fig. 3.3 (a)) you clearly need only
one camera located at the point markedx. Furthermorex can be chosen anywhere in the gallery. A
polygon that requires no more than one camera is known as astar-shaped polygon. All convex
polygons are obviously star-shaped but not all star-shaped polygons are convex. The set of loca-
tions in a star-shaped gallery where a single camera may be mounted so as to see everything is
called thekernel of the gallery. In Fig. 3.3 (b) we have an example of a non-convex gallery that is
star-shaped. The camera (pointy) may be mounted anywhere in the kernel (shaded region) of the
gallery.

Now assume that you have a very large and intricate (non-star-shaped) gallery consisting
of n walls and that the numbern is quite large. Perhaps your gallery looks something like the one
in Fig. 3.4. In 1973 Victor Klee asked the question: given an arbitrarily shaped gallery what is the
minimum number of cameras required to guard the interior of ann-wall gallery [Ho76]. Vasek Ch-
vatal soon established what has become known as “Chvatal’s Art Gallery Theorem” (or sometimes
“watchman theorem”):n/3 cameras are always sufficient and sometimes necessary [Ch75]. In Fig.
3.4n=36 andn/3=12 and therefore 12 cameras are sufficient according to the theorem. However,
for this particular art gallery only four are necessary and one possible position for these four is il-
lustrated in the figure. In 1981 Avis and Toussaint exhibited an efficient algorithm for actually
finding the locations where the cameras should be mounted [AT81]. We should add that it is tempt-
ing to place a camera on every third vertex of the polygon. The reader can easily design a gallery
where this placement strategy will fail no matter on which vertex one starts placing the cameras.

This type of problem for different types of cameras (or guards) and different types of envi-
ronments (galleries) falls into an area of research which has come to be known asart gallery the-
orems and algorithms. Joseph O’Rourke has written a jewel of a monograph devoted entirely to
this subject [O’R87].

In the second paper in this issue Thomas Shermer provides a tutorial survey of this area

Fig. 3.3 Convex (a) and star-shaped (b) art galleries require no more
than one surveillance camera.

x
y

(a) (b)

- 15 -

triangle illustrated in Fig. 3.2 is one such example. In Fig. 3.2 the straight line figure ABC forms
the standard equilateral triangle. Let the length of each side (straight edge) of the triangle beD. To
construct a Reuleaux triangle we substitute the straight sides of the triangle with circular arcs of
radiusD. For example, the straight side AB is substituted by the arc AB of a circle of radiusD cen-
tered at C. A similar construction is done for the sides BC and CA with the circle centered at A and
B, respectively. It is obvious that for any direction the parallel lines of support have a separation
D. In other words all caliper probes have the same diameter. Such a shape is known as a constant
diameter shape [Kl71]. If the Reuleaux triangle is placed vertically on the ground like a bicycle
wheel and a flat platform is moved parallel to the ground while keeping contact with the top of the
triangle it will roll as smoothly as acircular wheel without the platform bobbing up and down as
might be expected. Nevertheless the shape is highly non-circular. The weakness of this test in mea-
suring the roundness of the booster rocket sections may have contributed significantly to the tragic
Challenger disaster.

The above example illustrates the application of one type of probe (the caliper probe) to
determining the shape of an object. It also demonstrates that any number of such probes is insuffi-
cient to determine if a shape is circular. However, there are many other shapes of interest besides
circles. For example, we may imagine that a robot with touch sensors such as caliper probes must
determine the exact description of an unknown convex polygon ofn vertices. We may also assume
a more powerful probe that not only reports the separation between the parallel lines of support but
also the coordinates of the contact points. Then an unknown convex polygon may be completely
determined using afinite number of such probes.

The theory of geometric probing is concerned with these types of problems for a wide va-
riety of objects in two and higher dimensions using caliper probes as well as a variety of other types
of probes. Two of the most important issues here concern, on the one hand, the determination of
the number of probes that are necessary and sufficient to determine an object completely, and sec-
ondly, the design of efficient algorithms for actually carrying out the probing strategies. In the first
paper in this issue Steve Skiena provides a tutorial survey of this area which should be of interest
to researchers in computer vision, pattern recognition, verification and testing, quality control and
robotics.

This area of computational geometry also illustrates another difference between the field
as practiced now compared to that at the time of the Greeks. The Greeks were concerned with com-
puting properties of objects that were specified completely in advance and did not explore the
“learning” aspect exhibited by probing strategies applied to inputs that are only partially specified
in advance. This part of computational geometry is clearly inspired by the modern ideas springing
up in the field of artificial intelligence.

3.3 Art Gallery Theorems and Algorithms

Let us say you own an art gallery or museum with expensive paintings hanging on the walls
and priceless sculptures standing on the floor. You are interested in installing a security system
composed of surveillance cameras that are mounted at fixed locations but that can rotate the full
360 degrees so that they can “see” in all directions. Assume for simplicity that you live in “flat-
land”, i.e., the world is the two dimensional plane. In other words we will place the cameras on the
floor-plan of the art gallery. The art gallery can then be modelled by a simple polygon such as the

- 14 -

of support. The result of the probe, or information obtained, is the minimum separation distance
between the parallel lines of support. Let us call this type of probe acaliper probe. Clearly, by mak-
ing one single caliper probe you cannot conclude much about the shape of the object other than that
it can be placed within a parallel strip of widthD. But guided by your strong gut feeling that if a
smooth convex ring yields a separation distance ofD in a sufficient number of directions in which
the caliper probe is applied then the ring must be circular, you implement a quality control proce-
dure in which you apply three caliper probes each 60 degrees apart from the others. If each of the
three probes yields a separation distance ofD you conclude that the ring is circular. In retrospect
you may ask yourself how good such a quality control procedure is.

The above procedure is precisely the one that was used to determine if the sections of the
booster rockets of the space shuttle were circular enough to safely reconstruct the rockets for their
re-use in the following launch. A fascinating account of the technical, managerial and political cir-
cumstances surrounding the space shuttleChallenger disaster that killed seven astronauts is given
by the late Nobel prize winning physicist Richard Feynman. Feynman was appointed to the inves-
tigating committee for the disaster [Fe89] and wrote candidly about it in his book“What Do You
Care What Other People Think?”

When the solid-fuel booster rockets do their job they are jettisoned and fall into the ocean.
They are picked up, taken apart into sections, and sent to Utah for reconstruction. During the trip
by rail, not to mention their fall into the ocean, the rocket sections are squashed a bit and no longer
have a circular cross section. Therefore each section is tested for roundness by taking three caliper
probes 60 degrees apart using a rod to measure the diameter of a section. If the three diameters are
in close enough agreement the sections are considered to be circular and put together again. During
Feynman’s visit to the Utah plant the workers there complained to him that they often had difficulty
putting the sections together again and suspected that the tests were not adequate to guarantee
roundness. However, their superiors allegedly ignored their complaints.

It may come as a surprise to those ignorant in geometry that even a convex shape that has
a thousand, a million, or even an infinite number of diameters measured in an infinite number of
different directions all yielding the same valueD may still be highly non-circular. The Reuleaux

Fig. 3.1 Measuring the width of an
object with the calipers.

Fig. 3.2 The Reuleaux triangle: a highly
non-circular shape of constant width.

A

B C

- 13 -

field was the emphasis on including with each algorithm a complexity analysis in terms of “Big O”
notation and the introduction of lower bounds on the complexity of geometric problems. Thus, as
the title of his 1975 paper makes clear, he may perhaps fairly be considered to be the father ofgeo-
metric complexity theory.

We should remark that Shamos was not the first to use “Big O” notation to describe the
complexity of a geometric algorithm. Graham’s 1972 convex hull paper is a case in point [Gr72].
However Graham does not mention lower bounds. Indeed an lower bound on the con-
vex hull problem forn points was later established [PS85] and thus Graham’s algorithm is optimal.

It is also not accurate to say that computational geometry started with the convex hull prob-
lem and that Graham had the first convex hull algorithm. Almost the same algorithm as Graham’s
was published (without a complexity analysis) by Bass and Schubert [BS67] a full five years ear-
lier. For further historical remarks on the convex hull problem see [To85].

We close this section by mentioning that care has to be taken with the definition of the prob-
lem in regards to lower bounds. For example the lower bound for the convex hull prob-
lem mentioned above does not imply the same if the input is specified as a simple polygon ofn
vertices. Indeed, several O(n) algorithms exist for this special case of the input. The first such al-
gorithm was discovered by McCallum and Avis [MA79].

3. The Domain of Computational Geometry

3.1 Introduction

In this section we try to give the reader a wider view of the present-day domain of compu-
tational geometry and we locate the papers in this issue within this domain. Computational geo-
metry today is a large field and we cannot do justice to all of it. The papers in this issue touch on
only a fraction of the topics of interest to computational geometry. Therefore, as we have already
done in the previous section, where ever possible we mention other areas of the field and point the
reader to tutorial surveys and books concerning those sub-disciplines.

3.2 Geometric Probing

Assume that you are in the business of manufacturing metal rings in the shape of a circle
with a specified diameterD but that your manufacturing process is not perfect and sometimes pro-
duces rings that are not circular. However, the process is good enough that it always yields rings
that are convex and nicely smooth. You would like to implement a quality control procedure to de-
termine which rings are circular and which are not so that the latter defective rings can be sent back
to the shop for re-shaping into the desired circular rings.

You remember that in your high school days when shaping an object with a lathe in the met-
al work shop you used a set of calipers to measure the width of the object in a given direction such
as thex-direction illustrated in Fig. 3.1. Such a measuring test can be considered to be aprobe to
infer the shape of the object. Idealized in a geometrical setting we may view this probe as the result
of closing two infinitely long and parallel lines from infinity (one on each side of the object) until
they both touch the convex object. In this contact position the lines are referred to asparallel lines

Ω n nlog()

Ω n nlog()

- 12 -

For most practical purposes O(n log n) is almost equal to O(n). Note again that ifn is one million
then under the same conditions as above the O(n) algorithm will execute in only one second.

2.5.4 The Inherent Complexity of Geometric Problems

Because of today’s pre-occupation with faster and faster algorithms a very natural, and fre-
quently asked, question for the 20th century computational geometers is: what is the fastest algo-
rithm possible for solving a particular problem? For example, we may ask: what is the minimum
possible number of primitive operations required to compute the convex hull ofn points under a
suitable model of computation? Surprisingly, this simple question was never asked by the ancient
Greeks, or even Lemoine [Le02], with respect to the number of steps in their straight edge and
compass constructions. This is perhaps the single and most important difference between compu-
tational geometry then and now. An answer to this question provides what is called alower bound
on the time complexity of the problem. Instead of the “Big O” we use the symbol (“Big Omega”)
to denote lower bound. It should be emphasized that this is a statement not about an algorithm but
about a problem. However, it is a statement aboutall possible algorithms that can ever be designed
for solving the problem. The complexity of a particular algorithm for solving the problem is also
refereed to as anupper bound on the time complexity of the problem. Finding lower bounds is one
of the most theoretical activities computational geometers indulge in while having the most prac-
tical of consequences. For example, if for a given geometric problem and under a suitable model
of computation an O(n log n) algorithm exists but only an lower bound is known then scores
of researchers may spend years of precious time (possibly in vain) looking for faster algorithms.
On the other hand if someone proves an lower bound on the problem these researchers
can stop their search because no faster algorithm exists (within the constant factor in front of then
log n term). They can then turn, if necessary, to attempt to reduce the constant factor term in the
complexity. When the complexity function of an algorithm (upper bound) matches the complexity
function of the problem (lower bound) we call such an algorithmoptimal.

2.5.5 The Expected Complexity of Algorithms

It is also common in analyzing the complexity of an algorithm to report not only theworst-
case complexity, i.e., the greatest number of primitive operations required over all possible con-
figurations of the input data, but also theexpected complexity. In the expected complexity analysis
we assume the data are random and are generated from an assumed probabilistic model. Then un-
der these assumptions we compute the expected value of the number of primitive operations re-
quired. In practice theexpected complexity is often a more realistic description of the running time
performance of the algorithm. However, an expected complexity analysis is usually much more
difficult to carry out than the worst-case analysis. For a survey of expected time analysis methods
in computational geometry the reader is referred to the excellent survey paper by Luc Devroye
[Dev85].

2.5.6 Historical Remarks

The above discussion on complexity helps in resolving the contradictory claims concerning
when and with whom computational geometry started. Although by now it is clear that computa-
tional geometry did not start with Shamos [Sh75], [Sh78] the contribution that Shamos made to the

Ω

Ω n()

Ω n nlog()

- 11 -

with finding one algorithm to solve a problem. Today’s society hooked on technological progress
and speed wants faster and faster algorithms.

Consider for example the convex hull algorithm described above. For a given pair of points
we compute the line passing through them using sayk1 primitive operations. Then we testn-2
points to determine if each of them lies above or below the line. Assume that each such point-line
test takes no more thank2 operations. Now we must repeat this procedure for every pair of points
in S. There aren(n-1)/2 such pairs. Therefore the total number of primitive operations referred to
as thecomplexity of the algorithm and denoted byC(n) is given by:

Expanding this expression, rearranging terms, and re-labelling constants yields:

where the ci, i=1,2,3,4 are constants (i.e., are not functions ofn).

This simple algorithm already yields a polynomial of degree three as the expression de-
scribing its complexity. More complicated problems may yield very long and messy formulas mak-
ing it difficult to compare and contrast algorithms with them. Therefore we use a simple conven-
tion to simplify the complexity expressions: we use only the term which dominates all others and
drop the constants. This type of notation is called “big O” notation [PS85]. Using “big O” notation

the complexity of our algorithm becomes O(n3). Note that the largern gets the moreC(n) behaves

like n3. Also note that if the execution of one primitive operation takes one micro-second andn is
one million then the algorithm will take at least about 10,000 years to execute. Therefore whenn

is of this magnitude a time complexity of O(n3) may not be feasible. Many other algorithms exhib-
iting smaller time complexities exist for computing the convex hull ofn points [To85]. Graham’s
algorithm [Gr72] is one of the fastest and requires no more than O(n log n) primitive operations.

C n() n n 1–()() 2⁄[] n 2–()k2 k1+[]×=

C n() c1n
3

c2n
2

c3n c4+ + +=

Fig. 2.6 (a) The convex hull of a set of points. (b) Characterizing the
edges of the boundary of the convex hull.

(a) (b)

A

B

C
D

- 10 -

Philon’s and Newton’s.

Finally, note that doubling the cube is equivalent to solving the equationy3 = 2x3 men-

tioned above. This equation can be written asy = (2)1/3x. This is why Philon’s problem can indeed
be solved with the extended version of the Real RAM in which cube roots are allowed in its list of
primitive operations.

2.5.3 The Complexity of Algorithms

One of the most fundamental and useful geometric structures that has received a great deal
of attention in computational geometry is theconvex hull of a set. In fact, there are even those who
claim that computational geometry began with the classic 1972 paper by Ron Graham on comput-
ing the convex hull of a finite set of points in the plane [Gr72]. The convex hull of a setS is the
smallest convex set containingS. Fig. 2.6 (a) illustrates the convex hull of a set of points. Consider
the points as nails sticking out of a wooden board. Then, intuitively, you may think of the boundary
of the convex hull as the shape taken by an elastic band stretched around the entire set of nails.
WhenS is a set of points, the boundary of the convex hull ofS is a convex polygon consisting of
edges connecting some carefully selected pairs of points ofS. These special pairs are straight for-
ward to characterize (see Fig. 2.6 (b)). A pair contributes an edge to the boundary of the convex
hull if, and only if, the lineL through the pair divides the plane into two regions (one on each side
of L) such that one of these regions contains no points ofS. In Fig. 2.6 (b) A,B is such a pair where-
as C,D is not.

This characterization leads to a conceptually simple algorithm for computing the convex
hull of S that uses the algorithm discussed in the introduction for determining if a point is above or
below a line. Assume for simplicity of discussion that then points ofS are specified by their car-
tesian coordinates as real numbers and that no two points have the samex or y coordinates. All we
have to do is to consider each pair of points separately and compute the line determined by the two
points. If all the remainingn-2 points all lie above (or all lie below) the computed line then the pair
determines an edge of the boundary of the convex hull. Finally all the convex hull edges are con-
catenated to form a convex polygon.

A natural question now is: how powerful a computer do we need in order that it be able to
execute this algorithm? The reader may easily verify that the basic real RAM will suffice.

Another natural question is: for a setS of sizen how many primitive operations are required
by the basic real RAM to compute the convex hull ofS with the above algorithm? In other words,
what is thecomplexity of the algorithm? This question is the same as the question Lemoine [Le02]
asked for the straight edge and compass construction algorithms of Euclid. Lemoine called the
number of primitive operations used in the execution of the algorithm thesimplicity of the con-
struction. IfS consists of a given configuration of say 10 points we could just count the number of
operations performed by the RAM as the algorithm is executed and report this absolute number as
the complexity of the algorithm for these 10 points. This is how the ancient Greeks measured the
complexity of their constructions. However, because today the sizen of the input can be very large
and can vary a lot from problem to problem it is more convenient to report the complexity of an
algorithm as a function ofn. This seemingly minor detail is another difference between computa-
tional geometry then and now. The philosophically oriented leisure conscious Greeks were content

- 9 -

volving many cases, the correctness of his proof of his second proposition has received a great deal
of criticism over the past twenty centuries. In [To92a], [To92b] it is argued that it is Euclid’s com-
mentators and translators that are at fault and that Euclid’s original algorithm and proof of correct-
ness are beyond reproach.

Let us return however to the problem of finding the shorteststraight line ab bridging the
lines A and B via the pointp as illustrated in Fig. 2.5 (theshortest bridge problem). Recall that this
problem cannot be solved with the basic Real RAM. Also recall that the related highway facility
location problem was solved using the straight edge and compass by Heron of Alexandria in 100
A.D. We may ask if our shortest bridge problem can also be solved with straight edge and compass.
Actually the problem of computing the shortest bridge and the problem of whether it can be com-
puted with straight edge and compass have long and interesting histories [He81]. The first comput-
ing scientist to find a characterization of the solution was Philon of Byzantium circa 100 B.C. and
the shortest such line has come to be known as thePhilo Line named after him [Ev59]. More inter-
esting is the reason why Philon was interested in solving this problem with the straight edge and
compass. Three problems that the Greeks pursued with great passion were whether the straight
edge and compass could be used to (1) trisect an angle, (2) square a circle and (3) double a cube.
In problem (2) we are given a circle and asked to construct a square with the same area as the circle.
The last of these problems asks for constructing a cube with twice the volume of a given cube. In
planar terms, given a line segment of lengthx on the plane, representing the side of the given cube

(with volumex3), construct a line segment of lengthy, representing the side of the desired cube

(with volumey3), i.e., such that y3 = 2x3.

Solutions to this problem existed for hundreds of years before Philon’s time but using other
types of machines. For example Plato designed a computer to double the cube that resembled the
instrument that a shoe maker uses to measure the length of the foot [CR41]. But the most fashion-
able computing device at the time, due no doubt to the impact of Euclid’sElements, was the
straight edge and compass and no one before the time of Philon could solve this problem with the
straight edge and compass. With a brilliant reduction proof (typical of the problem reduction tech-
niques used in modern computational geometry) Philon showed that finding the shortest bridge
(Philo Line) is equivalent to doubling the cube and thus he set off to try to find a straight edge and
compass solution to the shortest bridge problem. In fact other investigators reduced other problems
as well to that of doubling the cube so that an entire class of problems existed such that if any one
of them could be solved with straight edge and compass then all of them could be. Thus the ancient
Greeks developed a theory of complexity classes in much the same way that modern computer sci-
entists are developing complexity theory [GJ78]. However, Philon never found a solution. In the
17th century Isaac Newton turned his attention to Philon’s problem, generalized it, and found a dif-
ferent characterization of it. He did not however find a straight edge and compass solution. In fact
no one ever found a straight edge and compass solution because it does not exist. One cannot dou-
ble the cube with a straight edge and compass but it was not until the advent of modern algebra in
the 19th century that this was proved. Because of Philon’s reduction theorem it follows that the
shortest bridge also cannot be computed with the straight edge and compass. It is interesting that a
problem of such importance in 100 B.C. should form the cornerstone of the 20th century shortest
transversal algorithms [BT91] and that the 20th century real RAM should have the same compu-
tational limitation with respect to this problem as the straight edge and compass. We remark here
that the characterization of the Philo line used in [BT91] and [BET91] is different from both

- 8 -

the compass with aperturebounded from above, and (7) the compass with aperturebounded from
below just to name a few [Sm61], [Ho70], [CR81], [Ko86]. The reader is referred to the delightful
book by William Ransom for a detailed treatment of what can and cannot be computed with a fur-
ther variety of ancient computing machines [Ra60]. Thecollapsing compass deserves elaboration
here. With the regular compass one can open it, lock it at a chosen aperture and lift it off the work-
space to some other location to draw a circle with the chosen radius. This operation cannot be done
with a collapsing compass. The collapsing compass is, like the other machines, anidealized ab-
stract machine (in the same spirit as the Real RAM) which allows the compass to be opened to a
chosen radius and a circle drawn, but no distance can betransferred. It is as if when the compass
is lifted off the work-space it collapses and thus erases any trace of the previous aperture made.
More complicated machines can be obtained by combining sets of simple machines. For example
in Euclid’sElements he selected thestraight edge andcollapsing compass (the combination of ma-
chines (1) and (3)) as his model of computation. Attempts have also been made to specify the prim-
itive operations allowed with each type of machine [Le02] and to design constructions that require
fewer operations than did Euclid’s original constructions.

Another active area of research has been to analyze and compare different machine models
in terms of their computational power [Ho70], [CR81], [Av87], [Av90]. For example, in 1672
Georg Mohr [Mo1672] and in 1797 the Italian geometer Lorenzo Mascheroni [Ma1797] indepen-
dently proved that any construction that can be carried out with a straight edge and a compass can
be carried out with a compass alone and Jacob Steiner proved in 1833 that the straight edge is
equivalent in power to the compass if the former is afforded the use of the compass once [SA48].
To remind the reader that thestraight edge andcompass are not yet obsolete computers we should
point out that the Mohr-Mascheroni result was strengthened as recently as in 1987 by Arnon Avron
[Av87] at the University of Tel Aviv.

The earliest theorem concerning the equivalence of models of geometric computation is
due to Euclid in his second proposition of Book I of theElements in which he establishes that the
collapsing compass is equivalent in power to theregular compass. Therefore in the theory of equiv-
alence of the power of models of computation, Euclid’s second proposition enjoys a singular place.
Here we mention as an aside that like much of Euclid’s work and particularly his constructions in-

Fig. 2.5 The shortest straight bridge
a,b between two lines via a pointp.

p

A

B

a

b

equivalence of machines as well as equivalence
classes of problems, all burning issues in modern
computational geometry and discussed in more de-
tail in some of the papers in this special issue.
Readers may suspect these concerns to be unique to
the electronic digital computer era. However, these
questions were just as hot in the days of Euclid.

In classical constructive geometry investi-
gators have also been concerned with defining the
models of computation, i.e., the characteristics of
the machine that will execute the algorithms. Typ-
ical machines that have been used in the past start-
ing with Euclid himself include (1) thestraight
edge, (2) theruler, (3) thecollapsing compass, (4)
the compass, (5) the fixed-aperture compass, (6)

- 7 -

rical problems in non-Euclidean and higher dimensional “worlds.”

2.5 Models of Computation

2.5.1 Primitive Operations

A model of computation is a description or specification of an abstract device, machine or
computer in terms of what primitive operations are allowed to be performed on the input data and
what is their cost. A model of computation is very useful in classifying and ordering problems and
algorithms in terms of their complexity and resulting execution time. Therefore the specification
and investigation of such models is a central concern in modern computational geometry.

One of the most popular models of computation used in computational geometry is theReal
RAM (RandomAccessMachine) [AHU74], [PS85]. In the basic version of this model the input data
are specified in terms of real numbers and we assume that a real number is stored in a storage lo-
cation that uses one unit of memory. We also assume that the following operations are primitive
and each can be executed in one unit of time:

1. The arithmetic operations (addition, subtraction, multiplication and division).

2. Comparisons between real numbers (=, <, >).

Very often a more powerful RAM is assumed by also allowing additional operations on the
list of primitives such as the computation of logarithms,k-th roots or trigonometric functions.

2.5.2 Computing Power and the Equivalence of Machines

Specifying a model of computation allows us to ask many interesting questions. For exam-
ple we may ask which problems can be computed at all with a specified machine in the first place.
We can also ask that for a given problem and machine we compare all the known algorithms (for
solving the given problem) in terms of the number of primitive operations and units of memory
they require. We illustrate these ideas with a concrete example below.

Consider another facility location problem similar to the highway facility location problem
solved by Heron of Alexandria that was illustrated in Fig. 2.2. In Heron’s problem it was required
to compute the shortest path between two given points via a given line. Instead, we now consider
two given lines A and B and a pointp as illustrated in Fig. 2.5 and we are required to find the short-
eststraight line ab bridging the lines A and B via the pointp. This problem is one of the corner
stones of a wide class of problems currently under investigation in computational geometry re-
ferred to asstabbing or transversal problems. In a typical instance of the stabbing problem we are
given a collection of objects and we ask whether there exists a line that intersects all the objects in
the collection. Furthermore, if such lines exist we ask that the shortest line segment intersecting all
the objects be reported [BT91], [RT90].

An obvious question now is whether this problem can be solved with the basic real RAM.
The answer is negative. However, if we ask this question about a more powerful machine by ex-
tending the capability of the basic real RAM by adding to its list of allowed primitive operations
the computation ofk-th roots then, as we shall see, the answer is in the affirmative. This leads us
naturally into questions regarding the relative computational power of different machines and the

- 6 -

(see Fig. 2.4). The center of this circle (the cross in Fig. 2.4) is precisely the location of X. The ra-
dius of the circle corresponds to the worst-case response time, the maximum distance that must be
travelled, the minimum power required of the transmitter, etc. depending on the context.

In this type of problem, typical of those considered today in computational geometry, the
size of the input to the problem, i.e., the numbern of geometric objects considered can be in the
hundreds, thousands, or millions depending on the particular application at hand. Solving such
problems by manualstraight-edge-and-compass constructions as was done in the days of Euclid
would clearly have been out of the question and hence such problems were not even attempted.
This then is one difference between computational geometry then and now. In the days of the
Greeks the number of objects considered in the input to an algorithm was very small compared to
today. However it should be noted that this is apractical and not anin-principle limitation of the
methods of ancient computational geometry.

The reader is referred to [LW86] and [RT90] for further details on the fast-growing litera-
ture concerning the application of computational geometry to solving facility location problems in
transportation and management science.

2.4 The Dimension of a Problem

The highway and minimax facility location problems considered above, like most of the
problems considered in say Euclid’sElements, were planar, i.e., two dimensional. The Greek ge-
ometers limited themselves to problems in two and three dimensions. Today, on the other hand,
computational geometry is not limited to the exploration of low dimensional problems. It is just as
natural to consider sets ofn points ind-dimensional space whered > 3 and to ask what is the small-
estd-dimensional hyper-sphere that contains then points. This is another difference between com-
putational geometry then and now and reflects to a large extent the applications that require the
development of such tools. The Greeks were concerned with thephysical world which is well mod-
elled by three Euclidean dimensions. Today on the other hand technologies such as pattern reco-
gnition by machine [To80] and robotics [LPS88], [SY87], [SSH87] provide us with many geomet-

Fig. 2.4 The smallest circle
enclosing a set of points.

- 5 -

the farm houses) on the same side ofl and refer to Fig. 2.2. Let d(a,b) denote the Euclidean distance
between pointsa andb. Find the pointr on l so thatd(p,r) + d(q,r) is aminimum. Let p’ be the
mirror image ofp reflected acrossl and refer to Fig. 2.3. Then the solutionr lies at the intersection
of l with the line throughp’ andq. This is known asHeron’s Theorem and often referred to as the
reflection principle. It has applications to solving a variety of geometric problems [Ka61], one of
the most recent being the efficient computation of the shortest tour inside a simple polygon that
visits at least one point on every edge of the polygon (The Aquarium Keeper’s Problem) [Cz91].
To see the correctness of Heron’s claim consider any other locationr’ and assume it is to the right
of r (a similar argument applies whenr’ lies to the left ofr). By construction, the linel is the locus
of points equidistant fromp andp’. Therefored(p,r) = d(p’,r) andd(p,r’) = d(p’,r’). Therefore the
length of the pathprq is equal to the length of the pathp’rq, and the length of the pathpr’q is equal
to the length of the pathp’r’q . But by thetriangle inequality rule which states that the sum of two
sides of a triangle is greater than the third, it follows that the pathp’r’q is longer than the pathp’rq.
Therefore the pathpr’q is longer than the pathprq establishing that indeedr is the optimal location
for the facility.

It can be easily verified by the reader that Heron’s problem can be easily solved with the
straight edge and compass computer.

2.3.2 The Minimax Facility Location Problem

In the standard version of theminimax facility location problem [FW74], [BS67] we are
given a set ofn points in the plane representing customers, plants to be serviced, schools, markets,
towns, distribution sites or what have you, depending on the context in which the problem is em-
bedded, and it is desired to determine the locationX (find another point in the plane) where a faci-
lity (service, transmitter, dispatcher, etc.) should be located so as to minimize the distance fromX
to its furthest customer (point). Such aminimax criterion is particularly useful in locating emer-
gency facilities, such as police stations, fire-fighting stations and hospitals where it is desired to
minimize the worst-case (or maximum) response time [TSRB71]. When transportation between
the facility and the customers can be carried out in a straight line path this problem has an elegant
and succinct geometrical interpretation: find the smallest circlethat encloses a given set ofn points

Fig. 2.2 The highway facility
location problem.

l

p

q

r?

Fig. 2.3 Illustrating the proof of
Heron’s Theorem.

l

p

q

r r’

p’

s

- 4 -

ing portion of the necklace and pull it away from A and B until both the AC and BC por-
tions of the necklace are taut.

The position of the knots B and C now indicate two points on a line perpendicular to L at
B. The line perpendicular to L may now be readily drawn with a straight edge through the points
B and C. This is how the Egyptian architects worked more than 4000 thousand years ago [Du90].
Thus the Egyptians, thousands of years earlier than the Greeks, already possessed a rudimentary
knowledge of theconverseof the theorem of Pythagoras, the latter stating that if ABC is a right
angle then the square on AB plus the square on BC is equal to the square on AC.

In the third century B.C. Greek mathematicians in Alexandria such as Euclid were heavily
involved with computational geometry. Even two hundred years before that geometry was already
flourishing in theHecademia, Plato’s school in Athens [HT85]. Although Plato was not a mathe-
matician but was in the business of awarding five-year philosophy degrees he felt that geometry
was so essential for a sound mind that as a prerequisite to study philosophy his students were re-
quired to study geometry for ten years! In fact, the entrance to his school displayed a sign that read,
“Let no one who is un-acquainted with geometry enter here.”So you may ask, is there any differ-
ence between the geometry of the ancient Greeks and modern computational geometry? In essence
not much! Modern computational geometry resembles closely that work of the Greeks concerned
with determining constructions for solving geometric problems. As we shall see many of the key
issues addressed in computational geometry today were also of concern to the ancient Greeks. The
first difference worth noting is that they dealt with inputs of small size whereas today, due to the
necessity of certain applications and the speed offered by electronic digital computers, we deal
with inputs with a large number of objects. A concrete example from the field offacility location
theory, a central concern to transportation and management science, will make the point.

2.3 The Size of the Input to an Algorithm

2.3.1 Heron’s Theorem

Consider two farms in the middle of a field in Saskatchewan on the same side of a nearby
highway. People are continually travelling from one farm to the other and during their trips would
like to take a detour to stop at the highway to obtain supplies. A supply company would like to
build a supply store (facility) somewhere along the highway so that the distance the farmers must
travel in going from one farm to the other, via at the supply store, is minimized. Where should the
supply company build its store and what is the path that the farmers should follow? This problem,
which I will call thehighway facility locationproblem, was solved by the Alexandrian mathema-
tician Heron around the year A.D. 100. Four hundred years earlier Euclid had laid down in his book
theCatoptrica the fundamental laws of reflection of light rays from a mirror:

Rule 1: The plane of incidence of the light ray coincides with the plane of its reflection

Rule 2: The angle of incidence of the light ray equals its angle of reflection

Heron was extending Euclid’s results and had explained the laws of reflection in simpler
more fundamental terms:light must always travel via the shortest path. Geometrically we can state
the above facility location problem as follows. Letl be a straight line as before (highways in
Saskatchewan are well modeled by straight lines) and letp andq denote two points (representing

- 3 -

variety ofneural network models of computation [MP69]. Many tend to associate computer sci-
ence disciplines with their appearance in the context of the advent of the electronic digital comput-
er, oblivious as to whether such a discipline may have existed before. Computational geometry is
a case in point. We show here that computational geometry (the various disciplines of present-day
computing science mentioned above) has been around for more than 2600 years starting with the
Greeks. In this historical context we illustrate the new features that computing science has added
to this developing field during the past thirty years. The electronic digital computer, while having
had a strong influence on the field, is an instrument used to give technological wings to computing
science. The essence of computing science is constructive (i.e., computational, algorithmic) math-
ematics independent of the technology of the machines used to implement the algorithms that it
yields. To quote the Dutch computing scientist Edsger Dijkstra, “computer science should be
calledcomputing science, for the same reason why surgery is not called knife science.” Let us then
consider what kind of geometry was done with some computers used in the past well before the
introduction of the twentieth century electronic digital computer.

2.2 Knotted Strings, Rulers, Compasses and the Electronic Digital Computer

If you did not have a protractor and you were asked to construct a right angle at a given
point on a given line you may remember how to do it with straight edge and compass, a popular
computer of the ancient Greeks. Let us assume however that all you have available is some string.
The following computer, inexpensive and easily manufactured, affords the implementation of a
simple algorithm the correctness of which is based on a sound theory of computational geometry.
Take 12 equally long pieces of string and tie them together with knots end-to-end so that they form
a “necklace” with 12 knots as in Fig. 2.1 (a). The construction of thisnecklace computer (or knotted
string computer) is now finished so let us turn to the algorithm.

Step 1: Take any knot, call it B, and attach it to the point on the line L where it is desired to
erect the line at right angles to L, as illustrated in Fig. 2.1 (b).

Step 2: Take the fourth knot away from B (in either direction) on the necklace, call it A, and
place it on the line L pulling the string taut so that A is as far as possible from B.

Step 3: Now take the third knot in the other direction away from B along the loose remain-

Fig. 2.1 Egyptian computer and algorithm used 4000 years ago for constructing a right angle.

(a) (b)
A B

C

L

knotted string computer

- 2 -

b. If yz > yp thenp lies belowl, if yz < yp thenp lies abovel and ifyz = yp thenp lies onl.

The above algorithm is but one approach to solve this problem. To illustrate a different
method let us assume that in our library of basic computational tools we already have available a
sub-routine that calculates the area of a triangle when the input triangle is represented by thex and
y coordinates of its three vertices. Then we could solve the problem in the following manner. Let
l andp(xp, yp) denote the line and point, respectively, as before and refer to Fig. 1.2. First we iden-

tify two new pointsq(xq, yq) andr(xr, yr) on the linel. The three pointsq, r, p define a triangle.

We may compute the area of this triangle using the following formula [Kl39], [St86]:

Surprisingly, the area will in fact tell us whetherp lies below, above or on the linel. Clearly
if the area is zerop lies onl. Consider now what happens when the area is not zero noting that in
each of the three terms summed in the above formula the indicesq, r, andp occur in a clockwise
order with respect to the triangle illustrated in Fig.1.2. Actually the expression given above for cal-
culating the area of a triangle does a lot more than that. It calculates thesigned area, i.e., the area
has anegative sign if the order of the indices in the formula corresponds to aclockwise order of the
vertices in the triangle and the area has apositive sign if the order of the indices in the formula cor-
responds to acounter-clockwise order of the vertices in the triangle. Furthermore, in order to solve
our problem we are interested in thesign rather than the absolute value of the area. Finally, note in
Fig. 1.2 that ifp lies belowl the vertices of the triangle appear in clockwise order in the formula
whereas ifp lies abovel the vertices of the triangle appear in counter-clockwise order in the for-
mula. Therefore, if the area is positive we may conclude thatp lies abovel and if the area is nega-
tive thatp lies belowl.

We have exhibited two very different algorithms for solving one and the same geometric
problem. At a low level computational geometry is concerned with the comparative study of fun-
damental algorithms such as these with the goal of determining, in different computational con-
texts, which algorithms run faster, which require less memory space and which are more robust
with respect to numerical errors. However, the discipline of computational geometry actively pur-
sued in computing science today is concerned mostly with the design and analysis of algorithms at
a conceptually much richer level than that described above.

2. Classical Constructive Geometry versus Modern Computational Geometry

2.1 Introduction

Today computational geometry is often billed as a new discipline in computing science
which many computing scientists would say was born either with the Ph.D. thesis of Michael Sha-
mos at Yale University in 1978 [Sh78], or perhaps his earlier paper on geometric complexity
[Sh75]. Others would say it began ten years earlier with the Ph.D. thesis of Robin Forrest at Cam-
bridge University in 1968 [Fo68] or perhaps with his subsequent papers on computational geo-
metry [Fo71], [Fo74]. Still others would claim it began with Minsky and Papert’s formal investi-
gation of which geometric properties of a figure can and cannot be recognized (computed) with a

Area
1
2
--- xq yr yp–() xr yp yq–() xp yq yr–()+ +[]⋅=

- 1 -

What is Computational Geometry?
Godfried T. Toussaint

Computational Geometry Laboratory
School of Computer Science

McGill University
Montreal, Quebec, Canada

1. Introduction

Consider the point p and the line l arranged in the plane as illustrated in Fig. 1.1. The fol-
lowing question immediately comes to mind. Does the point p lie on, above or below l? This ques-
tion asks for the answer to a geometric property of the given set of geometric objects {p, l}. In a
narrow sense computational geometry is concerned with computing geometric properties of sets of
geometric objects in space such as the simple above/below relationship of a given point with re-
spect to a given line. In a broader sense computational geometry is concerned with the design and
analysis of algorithms for solving geometric problems. In a deeper sense it is the study of the in-
herent computational complexity of geometric problems under varying models of computation. In
this latter sense it pre-supposes the determination of which geometric properties are computable in
the first place.

In the above simple problem let us assume that the point p is specified in terms of its x and
y coordinates (xp, yp) and that the line l is given by the equation y = ax + b, where a and b are the

slope and y-intercept, respectively. For simplicity of discussion assume that a is not equal to infin-
ity or zero, i.e., the line is non-vertical and non-horizontal. To solve this problem it suffices to com-
pute the intersection point of the vertical line through p with l. Call this point z with coordinates
(xz, yz) and refer to Fig. 1.1. Then xz = xp and yz may be calculated using the equation yz = axp +

Fig. 1.1
l

p(xp, yp)

line: y = ax + b

z(xz, yz)

Fig. 1.2
l

p(xp, yp)

line: y = ax + b
r(xr, yr)

q(xq, yq)

