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proper experimental methodology for estimating the performance of a decision rule. For a survey
of early work on this topic see [To74]. For the latest results see the complete and thorough text by
McLachlan [Mc92]. Many geometric problems occur here as well where computational geometry
offers solutions. For example, a good method of estimating the performance of the NN-rule is to
delete each member of {X,Θ} = {( X1,θ1), (X2,θ2),..., (Xn,θn)} in turn and classify it with the re-
maining set [Wa73]. Geometrically this problem reduces to computing for a given set of points in
d-space the nearest neighbour of each (the all-nearest-neighbours problem). For the latest and most
practical computational geometric results concerning nearest neighbour search in all dimensions
and for pointers to many other key recent results the reader is referred to [DSS92], [Yi93] and
[AM93].
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5. Decision Rules

Once a feature vectorX=[x1,x2,...,xd] has been extracted from an object in the image it is
often desired to classify the object into one of a predetermined set of pattern classes or categories.
There are scores of methods for doing this [DH72].

5.1 Parametric Decision Rules

In parametric classification we assume thatX is a random variable with some specified
probability density function or distribution described by some parameters that are usually estimat-
ed from data. In this approach one is often called upon to compute distances between sets under
varying types of metrics [To70]. Such is in fact an implicit computation of the Voronoi diagram
where the seeds are the estimates of location for the distributions. Alternately, one may seek to de-
scribe geometrically the decision boundaries themselves, i.e., the manner in which the discriminant
functions partition the feature space into regions associated with the pattern classes [To72].

5.2 Non-parametric Decision Rules

In the non-parametric classification problem we have available a set ofn feature vectors
taken from a collected data set ofn objects denoted by {X,Θ}={( X1,θ1), (X2,θ2),..., (Xn,θn)},
whereXi andθi denote, respectively, the feature vector on the ith object and the class label of the
object. One of the most powerful such techniques is the so-called nearest-neighbour rule (NN-rule)
[CH67], [De81]. LetY be a new object (feature vector) to be classified and letXk*∈{ X1,X2,...,Xn}
be the feature vector closest toY. The nearest neighbour decision rule classifies the unknown ob-
ject Y as belonging to classθk*.

In the 1960’s and 1970’s pattern recognition practitioners have avoided using the NN-rule
on the grounds of the mistaken assumptions that (1) all the data {X,Θ} must be stored in order to
implement such a rule and (2) to determineXk*, distances must be computed betweenY and all
members of {X1,X2,...,Xn}. Computational geometric progress in the 1980’s and 1990’s has made
the NN-rule a practical reality. Indeed, it is recommended as the decision rule of choice in practice.
It is surprising that in the OCR literature the misconceptions concerning the NN-rule are still
present. For example, Bokser [Bo92] states concerning the memory requirements of the nearest
neighbor classifier that“if the classifier requires a library of 200,000 vectors to achieve acceptable
accuracy on the training set, then 200,000 distances must be computed at run time to classify each
input vector.”Nothing could be further from the truth. Both of the above problems have been erad-
icated with techniques from computational geometry. Various methods exist for computing a near-
est neighbour without computing distances to all the candidates [FBF77]. In fact, the point location
techniques [LP77] do not compute any distances at all. Furthermore, not all the “training” data
{ X,Θ} is required to be stored. Methods have been developed [TBP84] to edit “redundant” mem-
bers of {X,Θ} in order to obtain a relatively small subset of {X,Θ} that nevertheless implements
exactly the same decision rule as using all of {X,Θ}. Such methods depend heavily on the use of
Voronoi diagrams and proximity graphs such as the Gabriel graph [TBP84].

5.3 Estimation of Misclassification

A most important and still too often neglected problem in pattern recognition concerns the
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can be computed efficiently in O(n log n) time. For a survey of the most recent results in this area
the reader is referred to the paper by Radke [Ra88]. It is expected that most of these proximity
graphs can find a place in the document analysis problem where they can make practical contribu-
tions.

4.3 Polygon Decomposition

4.3.1 Simple polygons

In 1975 Vasek Chvatal [Ch75] proved thatn/3 guards were always sufficient, and some-
times necessary, to guard (jointly see) the complete interior of a simple polygon (art gallery) con-
sisting ofn walls or vertices. This result has come to be known as Chvatal’sArt Gallery Theorem
and has since evolved to fill out an entire book on the subject [O’R 87]. Avis and Toussaint in 1981
obtained an O(n log n) time algorithm for actually placing the guards and noted that this algorithm
also decomposes the polygon into at mostn/3 star-shaped components [AT81] improving on the
complexity of a previous algorithm for this problem [Ma72].

The problems of decomposing simple polygons into various types of more structured poly-
gons have a number of practical applications and have received considerable attention recently
from the theoretical perspective. See [To88a] for several papers discussing recent issues. We have
already seen in the section on text-block isolation in the page-segmentation problem that decom-
position of the white empty spaces into maximal convex components provides an approach to that
problem. In character recognition, on the other hand, it is desired to obtain decompositions of a
simple polygon into perceptually meaningful parts. The so-calledcomponent-directed methods or
region-based covers and partitions decompose the polygon into well established classes of simpler
polygons such as triangles, squares, rectangles as well as convex, monotone, or star-shaped poly-
gons [To88a]. These decompositions however are rarely satisfactory from the morphological point
of view although they do have their place in other contexts. An alternate approach which may be
superior from this point of view is the use ofprocedure-directed methods based on proximity
graphs. In [To80b] it was proposed to use therelative-neighbour decomposition (RND) of a simple
polygonP of n vertices and an O(n3) time algorithm for its computation was given. ElGindy and
Toussaint [ET88] have since reduced this complexity to O(n2). Two verticespi andpj of a simple
polygon are relative neighbours if their lune contains no other vertices ofP that are visible from
eitherpi or pj. Two verticespi andpj arevisible if the line segment [pi, pj] lies in P.

4.3.2 Special classes of polygons

The fastest known algorithm [ET88] for computing the RND of a simple polygon is O(n2).
On the other hand, forconvex polygons the RND can be computed in O(n) time [Su83], and so can
the Delaunay triangulation [AGSS]. However, it is shown in [ART87] thatΩ(n log n) is a lower
bound for computing the Delaunay triangulation on the vertices of astar-shaped ormonotone poly-
gon. It is unknown whether any other proximity graphs can be computed in linear time for the case
of convex polygons. Furthermore, for most proximity graphs it is unknown whether they can be
computed in o(n2) time for special classes of simple polygons such asstar-shaped, monotone or
unimodal polygons. Forunimodal polygons the RNG and MST can be computed in O(n) time
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ture vectorX=[x1,x2,...,xd]. Thus an object, modeled as a polygonP, is mapped through this pro-
cess into a point ind-dimensionalfeature-space. Most features employed are of a geometric nature
and computational geometry has much to contribute to this aspect of OCR as well. For example
the medial axis ofP is a very powerful morphological descriptor [Le82] as are visibility [To88d]
and geodesic [To89] properties.

Symmetry is an important feature in the analysis and synthesis of shape and form [LT87].
As such it is not surprising that it has received considerable attention in the pattern recognition,
image processing, and computer graphics literatures. One of the earliest applications of computa-
tional geometry to symmetry detection was the algorithm of Akl & Toussaint [AT78] to check for
polygon similarity. Since then attention has been given to other aspects of symmetry and for ob-
jects other than polygons. For example, Sugihara [Su84] shows how a modification of the planar
graph-isomorphism algorithm of Hopcroft and Tarjan [HT73] can be used to find all symmetries
of a wide class of polyhedra in O(n log n) time. For a survey of the most recent work on detecting
symmetry see [Ea88].

4.2 The Shape of a Set of Points

In some contexts such as (1) the analysis of pictures of bubble-chamber events in particle
physics and (2) textline inference in document analysis from the center points of the black rectan-
gles of connected components, the input patterns are not well described by polygons because the
patterns consist of a set of disconnected dots. Such “objects” are calleddot-patterns and are well
modeled as sets of points. Thus one of the central problems in shape analysis is extracting or de-
scribing the shape of a set of points. LetS={x1, x2,...,xn} be a finite set of points in the plane. A
proximity graph on a set of points is a graph obtained by connecting two points in the set by an
edge if the two points are close, in some sense, to each other. The minimal spanning tree (MST)
[CT76], the relative neighborhood graph (RNG) [To80a] and theβ-skeletons [JT92] are three
proximity graphs that have been well investigated in this context. The lune ofxi andxj, denoted by
Lune(xi, xj), is defined as the intersection of the two discs centered atxi andxj with radius equal
to the distance betweenxi and xj. The RNG is obtained by joining two pointsxi andxj of S with an
edge if Lune(xi, xj) does not contain any other points ofS in its interior. By generalizing the shape
of Lune(xi, xj) one obtains generalizations of the RNG. One of the best known proximity graphs
on a set of points is the Delaunay triangulation (DT) and it is well known that the RNG is a super-
graph of the MST and the DT is a supergraph of the RNG [To80a]. Theβ-skeletons are a general-
ization of RNG’s and Gabriel graphs [MS80] and the lune-based neighborhoods in question are a
function of a parameterβ. For particular values ofβ, theβ-skeleton reduces to the RNG and the
Gabriel graph. In [To88c] a new graph termed thesphere-of-influence graph is proposed as a pri-
mal sketch intended to capture the low-level perceptual structure of visual scenes consisting of dot-
patterns (point-sets). Avis and Horton [AH85] showed that the number of edges in the sphere-of-
influence graph is bounded above by 29n. The best upper bound to date is 17.5. This follows from
a lemma of Bateman in geometrical extrema suggested by a lemma of Besicovitch (Geometry, May
1951, pp. 667-675) and an observation of Kachalski. Bateman’s lemma gives 18n and Kachalski’s
trick reduces it by 0.5. The same trick reduces Avis & Horton’s bound by 0.5. David Avis has
found examples that require 9n edges and conjectures that the best upper bound is in fact 9n. The
fact that thesphere-of-influence graph contains at most a linear number of edges allows for its ef-
ficient computation. Furthermore, from the shape measurement point of view, the graph suffers
from almost none of the drawbacks of previous methods and for a dot pattern consisting ofn dots
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the number of vertices of the polygons while retaining their inherent shape using polygonal ap-
proximation methods in order to reduce the complexity of subsequent algorithms applied to the
polygons. Such an approach was applied to character recognition by Pavlidis and his colleagues
[PA75], [PH74]. Here again is an area where computational geometry has great potential and is
playing an ever increasing role. Smoothing and enhancement can be carried out for example by
deleting carefully chosen branches of the medial axis of the polygon [Le82]. Given a polygonal
planar curve P= (p1,p2,...,pn) the polygonal approximation problem can be cast in many different
molds. One such version for example calls for determining a new curve P’= (p’1,p’2,...,p’m) such
that, 1)m < n, 2) thep’ i are a subset of thepi, and 3) any line segment [p’ j,p’ j+1] which substitutes
the chain corresponding to [pr,...,ps] in P is such that the distance between everypkfor k betweenr
ands and the approximating line segment is less than some predetermined error tolerance. Re-
cently Iri and Imal [II85] proposed an elegant O(n3) algorithm that finds the approximation that
minimizes m subject to the two other constraints. In [To85c] it is shown how the complexity of
their algorithm can be reduced to O(n 2 log n) time when the error criterion is changed. Further-
more, it is shown that the complexity of the method can be further reduced to O(n2) if the curves
are monotonic in a known direction. Since then these algorithms have been improved again to run
in O(n2) time for arbitrary simple polygonal chains and different error criteria [ET94], [CC92].

For a still up-to-date survey of polygonal approximation techniques the reader is referred
to the excellent paper by Imai & Iri [II88].

3.3 Pattern Matching

One approach to character recognition avoids feature extraction or shape analysis altogeth-
er and instead tries to match a set of points A (fiducial points obtained from the unknown object)
to a pre-stored set B from a collection of sets representing the different pattern classes. The geo-
metric problem here is to determine whether there exists an affine transformation (a general linear
transformation followed by a translation) that maps each point of A onto a corresponding point of
B. Only recently has computational geometry been invoked here [HU87], [HH89] and much work
remains to be done. For the special case in which the cardinalities of A and B are equal, whether
such a transformation exists can be determined inθ(n log n) time where n is the said cardinality
[HH89]. For a variety of computational geometric results in this area the reader is referred to
[AMWW88]. A related problem here is to compute thesimilarity or distance between two poly-
gons which could represent the boundaries of shapes or the convex hulls of sets of points [To84].
This problem is in turn closely related to the problem of approximating polygons by smoother ones
or by polygons with fewer vertices [ABGW90], [To85a].

4. Computational Morphology and Shape Analysis

Computational morphology is concerned with the analysis, description, and synthesis of
shapes and patterns from a computational point of view. It is therefore of central concern to docu-
ment analysis. Once the objects in an image have been normalized, smoothed, and cleaned up it is
time to measure their shape using mathematical descriptors of shape [Se82]. This is referred to as
feature extraction.

4.1 Feature Extraction

Typically we calculated features or measurements of the shape of an object yielding a fea-
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these should run much faster than Fortune’s for this problem. In fact several approaches have been
developed for obtaining O(n) expected time algorithms. Bentley, Weide and Yao [BWY80] show
that a combination ofbucketing techniques and any O(n logn) worst-case time algorithm yields an
algorithm with O(n) expected time. Devroye [De85] has proposed additional bucketing algorithms
for computing the MST in O(n) expected time. Probably the best practical algorithm with the most
promise for the textline inference problem is thequaternary-incremental-algorithm of Ohya, Iri
and Murota [OIM84]. This algorithm is a modification of the more primitive incremental O(n2)
worst-case algorithm of Green and Sibson [GS78]. Thequaternary-incremental-algorithm intro-
duces a special bucketing technique, stored as a quaternary tree, to determine the order in which
points must be inserted into the growing Voronoi diagram. An extensive experimental comparison
of this algorithm with other algorithms is described in [AEIIM85] where it is established empiri-
cally that the algorithm runs in O(n) expected time, is faster than the other algorithms tested and
for a thousand points runs in 0.25 seconds. It is conjectured that using this algorithm to compute
the Delaunay triangulation in Ittner’s approach will significantly speed up the resulting textline in-
ference algorithm. The lesson to be learned here is that for this application the points are uniformly
distributed and there are usually no more than, say, 2,000 points per text block.

3. Image Processing of Characters

Once the characters or objects in the image have been isolated they are massaged in one
form or another with the goal of making eventual classification easier. At this stage the objects may
be treated simply as a connected collection of pixels which are processed usually in parallel in the
more traditional forms of image processing [MP69], [Ro69], or they may be represented by their
boundary as polygons and processed using computational geometry in the more modern approach
[ET88], [Ke85] which nevertheless has early roots in the pioneering work of Feng & Pavlidis
[FP75].

3.1 Normalization

Normalization is performed to make feature extraction simpler and to obtain better results.
Many such techniques are inherently geometric in nature. For example, in the context of handprint-
ed numeral recognition Nagy & Tuong [NT70] compute the convex hull of the boundary polygon
of a numeric character, determine its four extreme points in the diagonal directions and then use a
geometric projective transformation to map the resulting quadrilateral into a square. Other ap-
proaches involve finding the minimum-area rectangle enclosing the polygon for which a very sim-
ple and practically fast linear-time algorithm is known [To83b]. Computing the convex hull of a
simple polygon is a problem fundamental at many levels in the document analysis problem and
here computational geometry has made great strides. In the past twenty years a score of linear time
algorithms have been published. Unfortunately it is a trickier problem than it appears and a dozen
of these algorithms are not correct, i.e., are not guaranteed to work for all simple polygons. Of the
correct algorithms there are a variety available that have different conceptual levels of difficulty.
The fastest and simplest algorithm which is recommended for practical applications in document
analysis is Melkman’s algorithm [Me87].

3.2 Smoothing, Enhancement & Approximation

In spite of the application of normalization and noise removal the resulting boundary poly-
gons of objects may still require smoothing or enhancement and it may also be desired to reduce
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according to a universal type-setting convention guided by ease of reading, characters are printed
closer together within textlines than between textlines.

One of the most successful, robust, skew-tolerant, elegant and simple techniques for text-
line orientation inference was recently proposed by Ittner [It93]. His method depends fully on re-
cent developments in computational geometry. However, the best tools from computational geo-
metry were unfortunately not used. Here we demonstrate how theexpected complexity tools of
computational geometry can be used to improve Ittner’s method even further. We first briefly
sketch Ittner’s method. For details the reader is referred to [It93]. To be more precise assume that
the given text blockB consists ofn black connected components (characters). The three key steps
in the procedure are (1) idealize each character by a point, thus obtaining a setS of n points in the
plane, (2) construct the Euclidean minimal spanning tree ofS (MST(S)) of then points obtained in
(1), and (3) determine the textline orientation by analysis of the distribution of the orientations of
the edges in the MST(S). Step (1) is done by computing the center of the bounding box of each
character and does not concern us here. Computational geometry is used to solve step (2) in two
phases. Cheriton and Tarjan [CT76] proposed a simple algorithm for computing the MST of a
graph in O(E) time whereE is the number of edges in the graph. If we join every point ofS to every
other we can certainly use the Cheriton-Tarjan algorithm on the resultingcomplete graph. However
such a graph hasE = n(n-1)/2 edges and hence the MST algorithm would run in O(n2) time. For-
tunately there are many graphs defined onS (usually belonging to the class ofproximity graphs
[JT92]) that have the property that they contain the MST(S) and also have O(n) edges. For these
graphs the Cheriton-Tarjan algorithm runs only in O(n) time. One such graph is the dual of the well
known Voronoi diagram ofS. This graph is usually called the Delaunay triangulation. Ittner [It93]
proposes computing the Delaunay triangulation with Fortune’s sweep-line algorithm [Fo87]. For-
tune’s algorithm runs in O(n log n) time and is one of the most elegant and simple algorithms for
computing the Delaunay triangulation of a set of pointsthat runs in O(n logn) time. However there
are simpler algorithms that should run much faster on the textline inference problem, for the rea-
sons described below.

We turn therefore to how Ittner’s method can be improved further. The weakness in Ittner’s
implementation of his novel and elegant ideas lies in the failure to distinguish between theworst-
case complexity (running time) of algorithms and theexpected complexity. On any given input an
algorithm takes a certain amount of time. On some inputs it runs faster and on others slower. The
input that makes the algorithm take the longest amount of time is theworst-case complexity. The
input that makes the algorithm take the shortest amount of time is thebest-case complexity. The
time an algorithm takes on anaverage type of input is theexpected complexity. Fortune’s algo-
rithm runs in O(n log n) worst-case time. However, it also runs in O(n log n) expected time. Fur-
thermore, while it is simple compared to many other O(n log n) worst-case time algorithms, it is
not as simple as some existing O(n2) worst-case time algorithms because it uses non-trivial data
structures such as balanced binary trees and heaps [Fo92].

The textline inference problem has a very important property that can be exploited here and
that is that the characters are very much uniformly distributed in a text block. In other words then
points inS are uniformly distributed in a rectangle. This is indeed a very special type of input and
for this type of input (in fact the type that is most often assumed in theory to prove the expected
linearity of an algorithm!) there exist much simpler Delaunay triangulation algorithms than For-
tune’s which run in O(n) expected time and do not involve complicated data structures. Some of



- 5 -

[Ba92]. In particular, in the elegant method of Baird, Jones and Fortune [BJF90] the problem is
solved by enumerating allmaximal white rectangles implied by the black rectangles. A white rect-
angle is called maximal if it cannot be enlarged while remaining outside the black rectangles. Their
enumeration algorithm takes O(n log n + m) time, wherem is the number of maximal rectangles
generated in the search. In the worst casem = O(n2). However using a clever heuristic to exploit
properties of layouts on the average they generate only O(n) maximal white rectangles. Thus they
conclude that apart from the sort (for which it appears they use an O(n log n) expected time algo-
rithm) the rest of their algorithm runs in O(n) expected time. We should add here that their entire
procedure can be speeded up to run in O(n) time by using the fastest sorting algorithms in practice,
namely the “bucket” sorting or “distributive” sorting algorithms [De85], [DK81]. Devroye [De85]
has shown that for a wide class of distributions of the points, “bucket” sorting can be done in O(n)
expected time. The distributions of the black rectangles in the text block are essentially uniform
and perfectly “tailor” made for these type of sorting algorithms. Therefore the algorithm of Baird,
Jones and Fortune [BJF90] can be made to run faster by using one of these linear expected-time
sorting algorithms in their first step.

2.3 Skew Determination

Once a block of text is located in the page the text-block is usually corrected for skew in
order to simplify the textline determination. Variants of the Hough transform are commonly used
for detecting and correcting for skew [LTW94], [HFD90], [Ba87], [RS86]. For example, in
[LTW94] the image containing a block of text is processed by deleting from every connected com-
ponent all black pixels other than the ones with the lowesty-coordinate. Then the Hough transform
is applied to the resulting image to detect lines. The Hough transform is a rather time consuming
brute-force method for mapping the original points in theprimal space to sinusoidal curves in the
dual space. It was first applied to detecting subsets of colinear points (line detection) in a crude
way by Duda and Hart [DH72]. Later Cohen and Toussaint [CT77] showed how Duda and Hart’s
version could be greatly improved by taking into account the distribution of the points along values
of constant angle and thus obtaining an optimal algorithm from the statistical detection theory point
of view. Since then many other improvements and variations have been proposed. This is an area
where computational geometry can make immediate gains. There are several computational geo-
metric methods available for detecting colinear points which are more efficient than the Hough
transform. For example, Dehne and Ficocelli [DF90] propose an O(n log n) time and O(n) space
algorithm for detecting dotted lines in a noisy image consisting ofn dots (points). Their algorithm
is based on “peeling” or successively “removing” points on the convex hull of the set. Therefore
computing the convex hull of a planar set ofn points is also a fundamental problem with many pos-
sible applications to document analysis. This problem is slightly more difficult than computing the
convex hull of a simple or monotone polygon, two problems we encountered earlier. However,
much work has been done on this problem in the computational geometry literature since 1972.
The algorithm recommended for use in practice which appears to be the fastest to date is the Bhat-
tacharya-Toussaint implementation of the Akl-Toussaint algorithm. A FORTRAN code of the al-
gorithm is available in [BT83b].

2.4 Textline Orientation Inference

Given a block of text the textline orientation inference problem consists of determining the
lines of text. Almost always these lines are either horizontal (as in English) or vertical (as in Chi-
nese). The fundamental geometric property that allows this problem to be solved is the fact that
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simple tasks a single threshold which partitions the image into “figure” and “background” is suf-
ficient. For an example of the application of thresholding to the segmentation of cervical cell im-
ages in the context of automated cervical cancer recognition the reader is referred to [CPT77]. In
this example the pixels are classified into three categories corresponding to the labels: nucleus, cy-
toplasm, and background. Of direct relevance to document analysis, another area where threshold-
ing is used quite successfully is character recognition [Ba68]. There are a variety of methods for
selecting thresholds [We78] and computational geometry is only beginning to be applied here. For
example, a frequently used heuristic for segmenting an image into grey-level clusters or objects is
to select thresholds at the bottoms of “valleys” on the histogram of the digital image. In a novel
approach Rosenfeld and de la Torre [RT83] proposed selecting the thresholds through a more in-
volved analysis of theconvex deficiency of the histogram. The convex deficiency is obtained by
subtracting (in the set-theoretical sense) the histogram from its convex hull. In order to compute
the convex hull of the histogram they propose an algorithm of Rutovitz [Ru75] which runs in
worst-case time O(n2) wheren is the number of grey levels. On the average the algorithm runs in
time O(nc) wherec is the number of vertices on the convex hull found. However, as pointed out in
[To83], the fact that a histogram is a very special type of polygon, namely amonotonic polygon
allows us to compute the convex hull with a very simple O(n) time algorithm [TA82].

2.1.2 Cluster Analysis

One of the most powerful approaches to image segmentation that lends itself to the appli-
cation of complicated images such as those of magazine or newspaper documents that contain tex-
tured pictures and diagrams as well as text blocks is the method of clustering and this is an area
where a great deal of computational geometry can be readily applied. In this approach each pixel
is treated as a complicated object by associating it with a local neighborhood inI. For example, we
may define a 5× 5 neighborhood of pixelpij, denoted byN5 [pij], as {pmn | i-2 ≤ m ≤ i+2, j-2 ≤
n ≤ j+2}. We next measurek properties ofpij by makingk measurements inN5 [pij]. Such mea-
surements may include various moments of the intensity values (grey levels) found inN5 [pij], etc.
Thus each pixel is mapped into a point ink-dimensionalpixel-space. Performing a cluster analysis
of all the resultingn × n points in pixel-space yields the desired partitioning of the pixels into cat-
egories. For an elegant treatment of the subject of cluster analysis the reader is referred to the book
by Jardine and Sibson [JS71]. A good treatment of the application of computational geometry to
cluster analysis can be found in [De86]. For more recent and novel approaches to the problem of
partitioning point sets see [HS89]. Many cluster analysis algorithms depend heavily on the com-
putation of distances. Computational geometry has yielded efficient algorithms for many distance
computation problems. The distance may be the diameter of a single set [BT87] or the minimum
[TB81] or maximum [BT83], [TM82], [Ro93] distance between two sets. Other cluster analysis
methods depend heavily on the computation of proximity graphs where computational geometry
offers a great deal of help [JT92].

2.2 Text-Block Isolation

The text-block isolation problem consists of extracting from a digitized document blocks
of text. By finding the enclosing rectangles around each connected component (character) and
around the entire set of characters we have a well structured geometric object, namely, a rectangle
with n rectangular “holes” (also called black rectangles). This problem is ideally suited to a com-
putational geometric treatment. Indeed, computational geometry approaches for performing this
task by analyzing the empty (white) spaces in the document have already appeared [BJF90],
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sent from the three texts mentioned above. However visibility is given a clear, excellent, and com-
prehensive treatment in the recent book by O’Rourke [O’R87]. Other computational geometric as-
pects of computer graphics are well treated by Stolfi [St91]. One of the most fundamental struc-
tures in computational geometry, and one that has a great deal of potential for contributing to the
short term improvement of document analysis systems, is the Voronoi diagram and since the
“birth” of computational geometry a score of variants on this structure have appeared. The books
by Rolf Klein [Kl89], Kokichi Sugihara [Su92] and Donald Knuth [Kn92] are entirely devoted to
this subject. There have also appeared three books which are collections of papers covering almost
all aspects of computational geometry. The book edited by Preparata [Pr83] contains twelve papers
on early material. More recent results can be found in the two books edited by Toussaint [To85a],
[To88a] and in the robotics-oriented collections edited by Schwartz et al., [SSH87] and Schwartz
& Yap [SY87]. Journals are also starting to devote special issues to computational geometry such
asThe Visual Computer [To88b],Pattern Recognition Letters [To92a], andThe Proceedings of the
IEEE [To92b]. Finally we mention a book which, although may not contain much on thecompu-
tational aspects of geometry, certainly covers much material of direct interest to computer vision
and also relevant to document analysis. This is the delightful book edited by Senechal & Fleck
[SF88]. In addition to these books there exist three survey papers on those aspects of computational
geometry of most relevance to the document analysis process [To80c], [To85b], and [To86].

2. Layout Analysis

The purpose of layout analysis is to obtain from a document, lines of characters (text) in
preparation for the character recognition phase of the process. The main sub-problems in layout
analysis are: (1) image segmentation in order to (2) obtain the black 8-connected components (un-
recognized characters), (3) skew determination and text-block isolation and (4) textline orientation
determination.

2.1 Image Segmentation

The transducer converts a light intensity array from the real world into a two dimensional
array or digital image ofpixels (picture elements) which are numbers resulting from a quantization
of the original range of light intensity values into a pre-specified number of sub-ranges calledgrey-
levels. In a binary picture there are only two levels and we speak of a “black-and-white” image.
The image segmentation problem consists of receiving a digital imageI = {pij | 1≤ i,j ≤ n}, con-
sisting of an n × n array (also viewed as a square lattice) of pixelspij, as input and producing a
labelled planar subdivision ofI as output. This presupposes labelling each pixel into categories.
This having been done each connected component ofI consisting of pixels with the same label or
category corresponds to one of the regions in the subdivision. For a survey of general image seg-
mentation techniques the reader is referred to [HS85]. For a survey of segmentation techniques
geared to the document analysis problem see [FNK92]. We discuss only two methods here where
computational geometry provides for elegant and efficient algorithms to solve the problems.

2.1.1 Histogram Analysis and Threshold Selection

One of the simplest methods of segmenting an image, but not a very powerful one for com-
plicated images containing a variety of textures, is to compute a histogram of all the pixels with
every intensity value and select some threshold values at the “significant” local minima of the his-
togram. Clearly, selectingk thresholds will yieldk+1 categories of pixels. For simple pictures and
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Fig. 1   Decomposing thedocument analysis problem into sub-problems.
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gram is to analyze a document in the real world with the aid of an input device which is usually
some form of transducer such as a digital camera and to arrive at a description of the document
which is useful for the accomplishment of some task. For example, the document may consist of
an envelope in the post office, the description may consist of a series of numbers supposedly accu-
rately identifying the zip code on the envelope, and the task may be the sorting of the envelopes by
geographical region for subsequent distribution. Typically the camera yields a two-dimensional ar-
ray of numbers each representing the quantized amount of light or brightness of the real world
scene at a particular location in the field of view. The first computational stage in the process con-
sists of segmenting the image into meaningful objects, usually black 8-connected components. The
image is also corrected for skew and shear [Ba87]. Blocks of text are then isolated usually by an-
alyzing the structure of the white sections of the document [BJF90]. Each block of text is then an-
alyzed to determine the orientation of the text lines which are almost always either vertical or hor-
izontal [It93]. The next stage usually involves processing the characters to remove noise of one
form or another. The third stage consists of feature extraction or measuring the “shape” of the char-
acters. The final stage is concerned with classifying the character into one or more categories on
which some subsequent task depends. This stage may also be followed or combined with algo-
rithms for using contextual information of the language [Sr93], [To78].

Computational geometry, a twenty-year old explosive discipline of computer science, con-
tinues to flourish at an exponentially increasing rate and make its presence felt in new areas. Sev-
eral books have already appeared on the subject. An introductory text by Preparata & Shamos
[PS85] covers most of the early work in this area. Mehlhorn [Me84] contains a subset of the ma-
terial found in Preparata & Shamos and a few different results. The combinatorial aspects of dis-
crete and computational geometry are treated in depth in the book by Edelsbrunner [Ed87]. The
question of visibility, of great interest to graphics, computer vision and robotics, is notoriously ab-
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ABSTRACT

Document analysis is concerned with the development of machines that can process
visual information automatically. Computational geometry is concerned with the
design of algorithms for solving geometric problems. Most problems in document
analysis can be couched in geometric terms. In this paper we outline how computa-
tional geometry may significantly contribute to many aspects of the document anal-
ysis process and we provide pointers to a selection of the computational geometry
literature where some of the most relevant results can be found.

1. Introduction

Document analysis is concerned with the automatic transfer by machine of visual two di-
mensional documents most commonly consisting of printed pages from books, magazines or news-
papers [PCHH93]. Maps and engineering drawings constitute another class of common docu-
ments. The first class of problems have much in common with optical character recognition (OCR)
and hence computer vision. On the other hand document analysis is a special case of computer vi-
sion and therefore its special properties give rise to special sub-problems such as text-block and
textline orientation inference. Furthermore these certain special properties allow the tailoring of
more general computer vision strategies resulting in better performance for certain tasks. Not sur-
prizingly computer vision has much to offer to document analysis. For a recent collection of sur-
veys concerning document analysis and OCR the reader is referred to the July 1992 special issue
of the IEEE Proceedings.

Computer vision has flourished now for some forty years as a sub-discipline of artificial
intelligence and hundreds of books are readily available on the subject and will not be mentioned
here. The best early book on computer vision, and still up to date from the point of view of discrim-
inant function analysis and Bayesian decision theory, is the text by Duda & Hart [DH73]. Popular
more recent books include Ballard & Brown [BB82] and Horn [Ho86]. Finally we mention the first
two books that are the fruit of the marriage between computer vision and computational geometry
and these are the monographs by Ahuja & Schacter [AS83] and Sugihara [Su86].

It is useful to decompose the document analysis problem into a series of subproblems that
are usually tackled sequentially and separately in some order such as that illustrated in Fig. 1. For
a more complete description of the various components of the problem see [Ba92] and [TA92].
Here we concentrate on those aspects of the document analysis problem where the application of
computational geometry can result in immediate gains. The purpose of a document analysis pro-


