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4.  Conclusions

We have presented an optimal algorithm for determining the visibility of a polygon from a
given edge. In the case where a polygon is not visible from an edgeuv, it is natural to define aweak
visibility polygon V(P, uv) as the set of all points ofP visible from at least one point onuv. An open
problem which is a natural extension of our work, would be to develop a linear algorithm to find
V(P, uv). Another interesting open question would be to determine a minimal set of edges from
whichP is visible. It is known that in the worst case a guard may have to visit  locations in
order to observe ann-sided polygon (Chvátal [9]). A final, more general problem than that consid-
ered here is: given a polygon does there exist an edge from which the polygon is weakly visible.
The corresponding problem for strong and complete visibility can be solved in linear time by using
the kernel finding algorithm of Lee and Preparata [5]. One of the motivations for this paper relates
to the notion of “external visibility” of polygons (Toussaint [10]). Our algorithm may be used to
determine in linear time whether a polygon is externally visible.
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procedure VISIBILITY

call PREPROCESS

call RIGHTSCAN

call LEFTSCAN

for i = 1 to n do if ri left of li terminate “no visibility”;

r ← p1; l ← pn;

for i = 2 to n - 1 do if ri is left ofr do r ← ri;

  if li is right ofl do l ← li;

if l = pn and r = pl terminate “complete visibility”;

if l is left ofr terminate “strong visibility from” l, “to,” r;

terminate “weak visibility”;

end

It can be easily verified that VISIBILITY runs in O(n) time. Thus, we may state the main re-
sult of the paper.

Theorem 3.1: The procedure VISIBILITY determines in O(n) time whetherP is weakly, strongly,
or completely visible from a given edge.

As a final point of interest, we give another characterization of visibility from an edge. Recall
from Lemma 2.4 thatP is weakly visible from uv if and only if every vertex ofP is weakly visible
from uv.

Theorem 3.2: P isstrongly visible from uv if and only if for every pair of vertices inP, there is a
point onuv from which they are visible.

Proof: Let y andz be two vertices ofP visible fromuv. We definely, ry, lz, rz as before. Ify and
z are visible from some pointw ∈ uv, it follows thatlyry ∩ lzrz ≠ ∅. Thus, if every pair of
verticesy, z is visible from a point inuv, it follows that every pair of segments,lyry, lzrz has
a non-empty intersection. From Helly’s theorem [8] we have that

The theorem now follows from Lemma 2.3.
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Lemma 3.1: If at some iteration, RIGHTSCAN terminates in step 2), then s is not visible from
uv.

Proof: If RIGHTSCAN terminates in step 2), then rst is a left turn and xst is a right turn. The
situation is illustrated in Fig. 6. Suppose that s is visible from uv, and consider any visibility
line sw from s to uv. This line enters the closed polygonal region bounded by H = rs ∪ RC(s,
r). If v = r we have an immediate contradiction. Since the visibility line sw lies between st
and sx, w cannot lie on uv. If v ≠ r, then uv ∩ H = ∅, and by the Jordan Curve Theorem, sw
must leave the region H. Hence, sw intersects RC(s, r), contradicting the fact that it is a visi-
bility line. Hence, s is not visible from uv, proving the lemma.

Lemma 3.2: If at some iteration, RIGHTSCAN terminated in step 4), then t is not visible from
uv.

Proof: Suppose RIGHTSCAN terminates in step 4) with rt ∉ uv and suppose t is visible from a
point w ∈ uv. Then the line segment tw intersects the internal convex path from t to v; see
Fig. 7. Since xst is a left turn, it follows that vertex s lies inside the polygon T = tw ∪ LC(t,
w). Thus, w ≠ v, v ∉ T, and the Jordan Curve Theorem implies that the chain RC(s, v) inter-
sects the line segment tw, contradicting the fact that t is visible from w. Thus, t is not visible
from uv.

Lemma 3.3: If both RIGHTSCAN and LEFTSCAN terminate normally, and for every vertex t
of P, rt is to the right of lt, then rt and lt are, respectively, the right and left intercepts of t.

Proof:  Consider any vertex t of P, and assume that the conditions of the lemma hold. Let w be
any point in the interval ltrt. We will show that wt lies inside P. Suppose that the chain RC(t,
v) crosses wt. Then the internal convex chain from t to v must cross tw. But, by construction
trt lies to the right of tw and therefore the convex chain from t to v must cross trt. This is a
contradiction, thus RC(t, v) does not cross tw. Similarly, the left chain LC(t, u) cannot cross
tw, and hence tw lies inside P.

On the other hand, consider any point w ∈ rtv with w ≠ rt. Then by the argument of Lemma
3.2, tw crosses the convex chain from t to v and hence RC(t, v). Thus, w is not visible from t.
Similarly, if w ∈ ult with w ≠ lt, then tw intersects LC(t, u) and w is not visible from t.

Lemma 3.4: If both RIGHTSCAN and LEFTSCAN terminate normally and for some vertex t of
P, rt is to the left of lt, then t is not visible from uv.

Proof: Consider any point w ∈ uv. If w lies to the right of rt, then by the argument of Lemma 3.2,
tw intersects the chain RC(t, v). On the other hand, if w is to the left lt, then tw intersects the
chain LC(t, u). But w must either lie to the right of rt or to the left of lt under the conditions
of the lemma. Thus, tw intersects P and since w was arbitrary, t in not visible from uv.

We can now state an algorithm for determining edge to polygon visibility.
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while top ≠ 1 and rst is a right turn

do top ← top - 1; s ← STACK(top);

if top ≠ 1 then r ← STACK(top-1); end;

4) (Compute right intercept and test whether it lies on uv)

Compute the intercept rt of the half-line from t through s with the line through uv;

If rt ∉ uv then terminate “no visibility”;

5) (Store t and move to next vertex)

     top ← top+1; STACK(top) ← t; r ← s;

s ← t; t ← t+1;

if t ≠ n go to 2.

The procedure LEFTSCAN is similar. The correctness of the algorithm follows from the fol-
lowing four lemmas.
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is easily seen that the vertices in regionA are visible fromv if and only if they are in sorted angular
order aboutu. The same applies to regionB, with vertex replacing vertexu. Let t be the intersec-
tion, if any, of the left extension ofuv, and the boundary ofP. Similarly, letw be the intersection,
if any, of the right extension ofuv and the boundary ofP. Define a new polygonC by C = {t, u, v,
w, LC(w,t)}. Referring to Fig. 5,C = {t, u, v, 4, 5, 6, 7}.C has the property that all of its vertices
lie on the same side of the line throughuv. A polygon with such a property is said to be instandard
form, and our main algorithm will be designed to work on such polygons. It is easy to construct a
linear routine PREPROCESS that: 1) putsP in standard form, and 2) for each vertexx in regions
A andB, either computesrx = lx = u or v, or determines thatx is not visible fromuv. The details of
such a routine will be omitted.

The main algorithm consists of two scans of the vertices ofP, which is in standard form. In
the first scan we traverse the polygon fromv to u in a clockwise orientation, successfully comput-
ing right intercepts. If we find a vertexx whose right intercept does not lie in the segmentuv, then
we terminate with “no visibility.” The scan procedure uses a stack to keep track of what may be
considered an “internal” convex hull of vertices ofP betweenv and the current vertexx. Given the
convex path betweenx andv we may readily find the right interceptrx by: 1) finding the vertexx’
adjacent tox on the convex path tov, and 2) extending the line throughxx’ to intersect the line
throughuv. If rx lies in the segmentuv we proceed to the next vertex; otherwise we terminate the
“no visibility.” The second scan is fromu to v in counterclockwise orientation, in which we com-
pute the left interceptslx.

We make the simplifying assumption that the vertices ofP are numbered 1 ton in clockwise
order aroundP, and the edgeuv in question is the edge joining vertexn to vertex 1. The only data
structure required is a stack called STACK which can hold up ton elements. Given three pointsr
= (xi, yi), s = (xj, yj), andt = (xk, yk), let

S = xk(yi - yj) + yk(xj - xi) + yjxi -yixj.

We say thatrst is aright turn if S is negative, and thatrst is aleft turn if S is positive. The
three points arecollinear wheneverS is zero. We can now present the algorithm RIGHTSCAN.

procedure RIGHTSCAN

1) (Initialize)

r ← STACK(1)← 1;

s ← STACK(2)← 2;

t ← 3; v ← 1; u ← n; top← 2;

2) (See ift is contained in the convex path determined so far)

x ← s-1;

if rst is a left turnand xst is a right turnthen terminate “no visibility”;

3) (If rst is a right turn, backtrack the stack to make the path convex)
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The above propositions suggest an algorithmic approach for determining polygonal visibili-
ty. For each vertex try to compute the right and left intercepts. If each vertex is visible, we can use
the intercepts to test for strong and/or complete visibility. These ideas are formulated in the next
section.

3.  An Algorithm for Edge-Polygon Visibility

As we have seen in Section 2, we can determine visibility from a given edge uv from a knowl-
edge of the right and left intercepts of each visible vertex. In this section we show how to compute
these intercepts in O(n) time.

The first step is a preprocessing step that we use to put the polygon in “standard form.” This
step simplifies the main algorithm, yielding an easier proof of correctness. Consider the polygon
P in Fig.5. It is clear that the vertices in region A are visible from edge uv if and only if they are
visible from vertex u. Furthermore, the right and left intercepts of such vertices are the vertex u.
We observe that if P is visible from uv in any sense, then the boundary of P can cross the line
through uv at most once to the right of v, and at most once to the left of u. When this is the case, it
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Lemma 2.3: Suppose all vertices ofP are visible fromuv. P is strongly visible fromuv if and
only if

Proof: If P is strongly visible fromuv, then there exists aw ∈ uv such that every vertex ofP is
visible fromw. Thus,w ∈ lpirpi for i = 1, 2,...,n and the intersection (1) is non-empty.

On the other hand, suppose (1) is true and letw be some point in the intersection. By the re-
marks preceding Proposition 1, we need only show that every boundary point ofP is visible
from w. Let st be any edge ofP. Since boths andt are visible fromw, Lemma 2.1 implies
that the entire edgest is visible fromw. Thus, the entire boundary ofP is visible fromw, prov-
ing the “if” part of the lemma.

The following lemma completes our characterization of edge visibility.

Lemma 2.4: P is weakly visible fromuv if and only if every vertex ofP is weakly visible from
uv.

Proof: The necessity of the condition is implied by the definitions. For the sufficiency, by Pro-
position 1 we need only consider a pointy on the boundary ofP. We will show thaty is visible
from some point onuv. Supposey lies on the edgest. Thens is visible from some points’ ∈
uv andt is visible from some pointt’ ∈ uv. There are two cases depending on whether or not
ss’ and tt’ intersect insideP. These cases are illustrated in Fig. 4(a) and (b).

If ss’ does not intersecttt’, then by the argument used above, the quadrilateralt’s’st must lie
insideP, and hencey is visible fromuv. In case (b), supposess’ intersectstt’ at q insideP. It
follows that edgestq, qs, st, ands’q, qt’, t’s’ all lie in P. Therefore, the triangless’qt’ andsqt
lie insideP. Now extendy throughq to a pointy’ on uv. It follows thatyy’ lies insideP, hence
y is visible fromuv.

lp1r p1 lp2∩ r p2 … lpnr pn uv∩∩ ∩ ∅̇≠

u
vrxwlx

x

LC(x,u)
RC(x,v)

Fig. 3.
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u’ is visible from some point u”  on uv. There are two cases depending on whether or not u’u’’
intersects v’v’’, and these are illustrated in Fig. 2(a) and (b). In case (a), consider the simple
polygon T{v’’, u’’, u’, y, v’}. We may assume that y does not lie on either the line segment
u’u’’ or the line segment v’v’’, for otherwise the proposition is immediate. It is clear that the
boundary of P cannot intersect the visibility lines v’v’’ and u’u’’. Similarly, by construction
the boundary of P cannot intersect yv’ or yu’. Thus, T lies inside P. Since T is a pentagon with
only one reflex vertex, namely, y, it follows that y is visible from any boundary point of T,
and hence from v’’u’’. In case (b), suppose u’u’’ intersects v’v’’ at q inside P. It follows that
the possibly degenerate triangle T = {u’’, q, v’’} lies inside P. If y ∈ T then we are done. Oth-
erwise, by construction Q = {v’, y, u’, q} is a quadrilateral that also lies inside P. Extend y
through q to a point y’’ on edge uv. Then yy’’ lies inside P and y is visible from uv. Since y
was any point in P, the “if” part of the proposition follows. The “only if” part follows trivially
from the fact that the boundary of P is contained in P.

We will assume for convenience that the origin of our coordinate system is at u and that the
edge uv lies along the positive x-axis. Following Shamos [4], we denote by V(P, x) the visibility
polygon of x, which is the set of all points in P visible from x. Between any two vertices x and y of
P there exists two chains of vertices: the left chainLC(x, y) and the right chainRC(x, y). In LC(x,
y) the interior of P lies to the right as the vertices are traversed from x to y, whereas in RC(x, y) the
interior of the polygon lies to the left.

Let x be any vertex of P that is visible from some point, say w, on the segment uv. We define
the right interceptrx as that point on uv farthest to the right of w that is visible from x, or equiva-
lently, from which x is visible. We define the left interceptlx as that point on uv farthest to the left
of w that is visible from x. These definitions are illustrated in Fig. 3. Note that the possibly degen-
erate triangle xrxlx lies inside P. It is possible that rx = v and lx = u. In fact, this condition is satisfied
for all vertices x if and only if P is completely visible from uv, as we now demonstrate. To avoid
boundary conditions, we define ru = rv = v and lu = lv = u.

Lemma 2.1: Let st be any edge of P, and let x be any point in P. Then if both s and t are visible
from x, so is the entire edge st.

Proof: Consider the triangle T = {x, s, t}. By the hypothesis of the lemma, the boundary of P
does not intersect the open segments xs and xt. Since st is an edge of P, it follows that T lies
inside P. Hence, the lemma follows.

Lemma 2.2: P is completely visible from uv, if and only if, for all vertices x of P, rx = v and lx = u.

Proof: If P is completely visible from uv, then for every vertex x of P, x must be visible from u
and v, so rx = v and lx = u, thus proving the “only if” part of the lemma.

On the other hand, suppose for all vertices x of P, rx = v and lx = u. Let w be any point of uv,
and let st be any edge of P. Since both s and t are visible from w, Lemma 2.1 implies that the
entire edge st is visible from w. Thus, the boundary of P, and hence P itself, is completely
visible from uv, proving the “if” part if the lemma.

The left and right intercepts are also of use in characterizing strong visibility.
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2.  Definitions and Preliminary Results

Let P denote a simple planar polygon which is represented by a set of n points p1, p2,..., pn
in the Euclidean plane. We assume that the points are given in clockwise order, so that the interior
of the polygon lies to the right as the boundary of the polygon is traversed. We say that a line seg-
ment lies insideP if the interior of the line segment lies in the interior of P. Similarly, a simple
polygon Q lies inside P if the interior of Q lies in the interior of P.

Two points are said to be visible if the line segment joining them lies inside P. In this paper
we discuss visibility of P from some fixed edge uv of P. We begin by giving three natural defini-
tions of visibility from an edge.

1) P is said to be completely visible from an edge uv if for every z ∈ P and every w ∈ uv, w
and z are visible.

2) P is said to be strongly visible from an edge uv if there exists a w ∈ uv such that for every
z ∈ P, z and w are visible.

3) P is said to be weakly visible from an edge uv if for each z ∈ P, there exists a w ∈ uv (de-
pending on z) such that z and w are visible. This latter definition has appeared previously in math-
ematics literature [6]. In Valentine’s terminology the edge uv is a “set of visibility” of P. In [6] Val-
entine characterizes minimal sets of visibility. For additional types of external visibility of sets in
two and higher dimensions, see Buchman and Valentine [7].

These definitions are illustrated in Fig.1. As motivation for the definition, consider the place-
ment of a guard on edge uv, whose job is to observe the entire polygon P. If P is completely visible
from uv, the guard can be positioned at any location on uv. If P is strongly visible from uv, then
there always exists at least one fixed location w on uv from which the guard can observe P. Finally,
with only weak visibility, it is necessary for the guard to patrol along some section of uv in order
to observe the entire polygon.

Lee and Preparata [5] have found a linear algorithm for determining the kernel of a polygon.
Their algorithm can also be used for testing both strong and complete visibility. First find the ker-
nel and then determine its intersection with the given edge uv. The algorithm given in their paper
does not appear to be useful in determining weak visibility.

We will begin by making a simplification which is intuitively satisfying. We will show that
a polygon P is visible in any of the three senses given above if and only if the boundary of P is
visible in the corresponding sense. This fact follows easily from the definition in the cases of com-
plete and strong visibility.

Proposition 1: P is weakly visible from uv if and only if the boundary of P is weakly visible
from uv.

Proof: Suppose that the boundary of P is weakly visible from uv. Let y be any point in the interior
of P. We will show that y is visible from some point on uv.

First, extend uy to the nearest point u’ on the boundary of P. Similarly, extend vy to the near-
est point v’ on the boundary of P. By assumption, v’ is visible from some point v” ∈ uv and

(1)
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An Optimal Algorithm for Determining the Visibility of a
Polygon from an Edge
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ABSTRACT

In many computer applications areas such as graphics, automated cartography, image
processing, and robotics the notion of visibility among objects modeled as polygons
is a recurring theme. This paper is concerned with the visibility of a simple polygon
from one of its edges. Three natural definitions of the visibility of a polygon from an
edge are presented. The following computational problem is considered. Given an n-
sided simple polygon, is the polygon visible from a specified edge? An O(n), and thus
optimal, algorithm is exhibited for determining edge visibility under any of the three
definitions. The paper closes with an interesting characterization of visibility and
some open problems in this area.

Index Terms - Algorithms, computational complexity, computational geometry, com-
puter graphics, hidden line problems, image processing, robotics, simple polygon, vi-
sibility.

1.  Introduction

The notion of visibility in geometric objects is one that appears in many applications: the hid-
den line problem of graphics [1], in image processing [2], surveillance, and control of robots [3].
Several papers [2], [4], [5], [11], [12] have appeared concerning the problem of visibility in a po-
lygonal region from a fixed point. In this paper we discussed what might be termed the “jail-house”
problem, i.e., the problem of polygonal visibility from an edge. It is convenient to imagine a guard
or robot patrolling a portion of the boundary of a polygonal region. It is natural to ask under what
circumstances the entire region can be observed. In this paper we introduce three natural defini-
tions of visibility from an edge of a polygon. Our main result is a linear algorithm for determining
whether or not a given polygon is visible, under any of the definitions, from a given edge.
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