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and upon applying the vector calculus identity
Ve(yd) = A-Vy + yv-A4
to the first term, (13) follows.
Corollary: The divergence of §(x) equals its variance at x; i.e.,
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v
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Y = Vix) 14)
7 v/
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(X vix). (1

This corollary relates spatial variations in §(x) to conditional expecta-
tions at x; and, in addition, it enables us to state that the CME is
completely specified by its variance function V(x). This statement is a
consequence of Helmholtz’s theorem, which states that a vector is
completely specified by its divergence and curl. (Recall that as §(x) is
conservative, V. x §(x) = 0.)

The primary value of Property 3 and its corollary is that they relate
both the likelihood ratio and CME to a conditional variance function
of the signal. Hence, by viewing L(x) as a potential function and §(x)
as a conservative vector field, the mathematics of potential theory can
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I1I. CONCLUSIONS

This correspondence has noted a fundamental property relating
optimum detection and CME for random signals in white Gaussian
noise for discrete-time processes, and has discussed the role of the
estimation—correlation operation in forming an optimum decision
statistic.

By viewing the log-likelihood ratio as a potential function, the
CME of the signal was shown to constitute a conservative vector
field. This concept was used to show the intimate connection between
spatial variation (divergence) of the CME and the conditional signal
variance. These results suggest that the mathematics of potential theory
might play an important role in furthering the theory of signal
detectability.
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Note on Optimal Selection of Independent Binary-Valued
Features for Pattern Recognition

Abstract—Given a set of conditionally independent binary-valued
features, a counter example is given to a possible claim that the best
subset of features must contain the best single feature.

Recently, Elashoff et al.! showed that for optimal selection of a
subset of independent binary-valued features, the features generally
may not be evaluated independently. Specifically, an example is given!
in which, given three independent variables x;, x,, and x3 such that
&(x1) < &(x2) < e(x3), where e(x,) is the error probability when the
ith variable alone is used, the first and third variables are jointly better
than the first and second variables. In other words, e(x;,x3) < &(xy,X2),
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where £(x;,x;) is the probability of error when the ith and jth variables
are used together. In this note, the results of Elashoff er al. are carried
one step further, and it is shown that the best pair of variables need
not contain the best single variable.

Let there be two equiprobable pattern classes C; and C,, and let
@, =Px;=1|Cy) and B = P(x; =1]|Cp), i= 123, where
P(x; = 1| C)) is the conditional probability that the ith variable
takes on the value ONE conditioned on the jth pattern class. As in
Elashoff et al., et the foliowing assumptions be made:

1) e(xy) < e(xz) < &(x3);
2) w < f,i=123;
3) By — g > fo— ap > 3 — aa.

For simplicity of notation, let /; = (8; — o), by = 31 — a; — BY),
and D;; = k| — |Ay]- It is shown by Elashoff et al. that for two con-
ditionally independent variables x; and x;, the minimum error prob-
ability is given by

e(xnxy) = He(x) + elx)) — L byl — I ], 6y
where &(x) = 31 — (B — ) for k£ = ,j. From (1) and conditions

1), 2), and 3) above, it can easily be shown that for e(x;,x,) <
&(x2,x3), a sufficient condition is given by

lhy| > |hs| @
and a necessary and sufficient condition is given by
1{l —1
Dsy < = [—2)A + 2. 3)
2 I

Consider as an example, three features x;, x,, and x; chosen so as
to violate (3) such that ¢(x;) < &(x,) < e(x3). Such examples are not
difficult to find. The probabilities of the three features conditioned on
the two pattern classes are given by

oy = 0.10 ay = 0.05 a3 = 0.01

p: = 0.90 B> = 0.80 By = 0.71.

Substituting these figures into (1) yields the following results:

e(xy) = 10 percent &(x1,x,) = 8.25 percent

e(x;) = 12.5 percent &(x1,x3) = 6.9 percent

e(x3) = 15 percent &(x2,x3) = 5.875 percent.

From these results it is observed that, although all pairs of features
are better than the best single feature, the pair consisting of the two
worst single features is much better than the pair consisting of the two
best single features. Furthermore, the best pair does not contain the
best single feature; in fact, the best pair is made up of the worst single
features.

GODFRIED T. TOUSSAINT
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Comments on “A Modified Figure of Merit for Feature
Selection in Pattern Recognition”

In a recent correspondence [1] a modification of the conventional
mutual-information effectiveness criterion for feature selection in
pattern recognition was described. However, there seems to be some
confusion between selecting a subset of features and selecting features
individually. This apparent confusion may confuse the reader further

Manuscript received August 15, 1970; revised January 27, 1971.



CORRESPONDENCE

about the independence assumptions and about some of the conclusions
concerning the merit measure.
The mutual-information criterion for a subset of m features, using
the notation of [1], is given by
_ n
winH=y3

i

gP(X=j|c=i)P(c=i)
o PX=jlC=1
PE=)

!

- log, @
where X has m components and each component can take on g values.
On the other hand, the mutual-information criterion for any one feature
X* where k = 1,2,- - -,m, is given by

nogq

IC| X% = _21 2 P(X*=j|C=0PC =10
=
P(X*=j|C=1i)

1
%82 T pr = )

92
Equation (2) is equivalent to the expression for the mutual-information
criterion given by (12) in [1], and the merit measure is based on this
equation. _

In [1], the authors state that the independence assumption is implied
in the following relationships:.

PO = T PO, 3
PRIC) = T] PU*| O @

It should be noted that in pattern recognition, the assumption of

independent features usually implies only (4). In fact, the assumption

of (3) results in an entirely different situation from that resulting

when (4) is assumed. Furthermore, Barabash [2] showed that the

conditions (3) and (4) cannot, in general, be fulfilled simultaneously.
The mutual information of (1) is defined as follows:

IC|X)= H(C) — H(C| X). &)

Since the measure is symmetric in its two arguments [3], (5) may be
written as

I(C| %) = HX) — HEX| C). (6)

It is clear from (6) that in order to obtain a maximum amount of
information, features should be selected so as to maximize H(X) and
minimize H(X | C). It is well known that

m
HX) < Y HXY
k=1
with equality holding when (3) is satisfied, and
m
HX|C) < ¥ HX*ICO)
k=1

with equality holding when (4) is satisfied. Therefore, in order to
maximize (6) or (1), features should be selected so as to satisfy (3)
and violate (4). However, in practice it is difficult to find situations in
which distributions satisfy (3) and violate (4). The much more reason-
able and common method of approach is to disregard (3) altogether
and to assume (4). Such distributions are more easily found in practice.
Furthermore, when

PX*=ijC=j)# PX*=i|C=1])

forj,l=1,---nj#1i=1,---,g,and k = 1,--- m, then assumption
(3) implies that (4) is no longer valid, and vice versa, in which case
both (3) and (4) cannot be assumed simultaneously. Since this result is
considered in detail in [2], a proof will not be presented here.

In the section on statistical relationships, the authors state, “In all
phases of this correspondence the independence assumption is upheld
and only one feature is considered at a time.” This statement is con-
fusing because it seems to imply that features can be considered one at a
time because the independence assumption, implied by (3) and (4), is
upheld, which is incorrect, as will be shown below.
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When a feature subset of m features is selected with a criterion such
as the entropy given by

HOD) = = § P8 = ])logs PCE = ), @
2

(3) is usually assumed to reduce the computation. When (3) is assumed,
then

HX) = kZ_IIH ", ®

and the features can be evaluated one at a time using H(X"). Similarly,
when a feature subset of m features is selected with a criterion such as
the average entropy given by

H()?]C)=—.ZIP(C=I').‘121P(X=J'|C=Z')
i= J=

(4) is usually assumed for the same reasons. When (4) is assumed, then

m
HE|C) = ¥ HX*|O), (10)
k=1
and the features can be evaluated one at a time using H(X* | C). In
both of the above examples, the entropy criteria are additive under
the corresponding independence assumptions. It would be desirable,
when using the mutual-information criterion of (1) to select a subset of
m features, to be able to select the features individually using (2) as was
done in [1]. This could be done if the following condition were upheld:

m
I(C]|X) =3 IClX%. (11
k=1

Unfortunately, the mutual-information criterion of (1) cannot be made
additive under the independence assumptions for the following reasons.
If, on the one hand, either (3) only, or (4) only, is assumed, then it
can easily be shown that (1) does not decompose, i.e., (11) does not
hold, although (1) is simplified by either of the two assumptions. If,
on the other hand, both (3) and (4) are assumed, then it can easily be
shown that (1) does decompose and (11) is valid, but (3) and (4) are
mutually contradictory and cannot be assumed simultaneously.
Therefore, if one is going to select a subset of features using the mutual-
information criterion, one should use (1), and no independence
assumptions can correctly lead to using (2). On the other hand, if one
wants to decide arbitrarily to select individual features, to make up
the desired subset, by using the mutual-information criterion, then one
should use (2), in which case the independence assumptions (3) and (4)
are irrelevant.

Had the authors of [1] discussed selection of features individually
rather than the selection of a subset of m features, and had they left
out any discussion of independence assumptions, their correspondence
would have been clear because then the mutual-information criterion is
given by (12) in [1]. The confusion arises because the authors discuss
the selection of subsets of features, for which the mutual-information
criterion is given by (1), and then end up using the merit measure that
is based on (2), which follows from (1) only under the mutually
contradictory assumptions (3) and (4).

The conclusion that the merit measure does better than the mutual-
information criterion may also confuse some readers. The authors
state that subsets of features were consistently better when selected
using the merit measure than when using (2). Although these results
are of interest, (2) is not the mutual-information criterion for subsets
of features. It would be of interest to find out if individual features were
consistently better when selected using the merit measure than when
using (2). Furthermore, subsets of features selected with the mutual-
information criterion of (1) may be consistently better than subsets
selected with the merit measure.

Finally, it should be stated that these comments do not negate the
validity of the merit measure. Rather, they may help to explain why
the merit measures does better than (2) when selecting subsets of
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features. However, in order to appreciate the merit measure more fully,
experiments would have to be performed using (1) and a comparison
of (1) with the merit measure with respect to computational complexity
would have to be made.

GODFRIED T. TOUSSAINT
Dep. Elec. Eng.
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Unsupervised Estimation of Signals With
Intersymbol Interference

Abstract—A decision-directed unsupervised estimation algorithm is
used in a receiver that processes signals with unknown intersymbol
interference. The estimator utilizes the statistical structure of this
dependent sample problem to reduce the computational complexity.
Asymptotic and experimental dynamic probability of error results are
presented.,

I. INTRODUCTION

In seeking to maximize the flow of information through a digital
data communications system with a band-limited channel, it is neces-
sary to operate at rates where energy from one transmitted signal
baud is smeared into following bauds. This intersymbol interference
between L adjacent bauds can greatly reduce the performance of the
communications system unless compensated for at the receiver.
Approaches that rely on linear methods such as tapped delay lines or
shift registers have been in use for some time [1]-{5]; however, ap-
proaches that seek to minimize error without the linearity constraint
[6]-[9] can offer a significant improvement in performance. Simulation
results in [9] give a practical channel example where the optimum
nonlinear sequential detector with sufficient “look ahead” at future
samples has a considerably lower probability of error than a trans-
versal equalizer.

In many practical applications the effect of the channel on the
transmitted signals is unknown and time varying. For a particular
channel model, the channel-dependent parameters in the receiver’s
decision procedure can be estimated either by using isolated pulses as
sounding signals (e.g., see [2]) or by using the unknown signals received
during actual data transmission. In the latter case, since the received
signals are of unknown classification, such an estimation approach is
called unsupervised estimation.

This correspondence investigates the application of a suboptimum
unsupervised nonlinear receiver to intersymbol interference in linear
channels that are slowly varying relative to the convergence rate of
the estimation algorithm. The emphasis of the approach is on a simply
structured receiver that can follow fairly rapid changes in channel
parameters such as occur in some fading communications channels.
Dynamic performance simulations are presented in Section V showing
examples where the convergence rate of the receiver to the unknown
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Fig. 1. Decision boundaries and cluster structure for [v = L = 2].

channel parameters is almost as fast as the convergence rate of a
sample mean. This is in contrast with earlier parameter adjustment
algorithms based on gradient techniques [2]-[5], [9], which are much
slower.

I1. DiGITAL COMMUNICATIONS SYSTEM MODEL

A block diagram of the M-ary digital-communications-system
sampled low-pass equivalent model is given in Fig. 1. One of M
symbols {b j}“j’;o‘. is transmitted during the kth time slot producing B,.
For amplitude modulation the {;} are real numbers, while for phase-
shift keying {6, = exp (I2nj/M )}“j'; o+ The symbol sequence is assumed
statistically independent. The channel is characterized by a finite-
memory linear channel transformation producing R,, followed by
zero-mean additive white Gaussian noise N, [11]. Hence the received
samples X, can be written

XII=RH+NII

n
> neg+1Bi + Ny, n<lL
k=1

n
an—-k+1Bk + Nna n= Ls (1)
k=n—L+1

where {a},Z, is the sampled low-pass equivalent channel impulse
response.

TII. STATISTICAL STRUCTURE OF MULTIBAUD SAMPLE SPACE

For L > 1 the sample sequence {X,}, -, is not statistically inde-
pendent even though the original symbol sequence and the additive
noise were assumed to have this property. Approaches to including the
effect of the dependent samples in the decision rule for B, range from
the optimum-compound [6] and sequential-compound [9] decision
procedures to suboptimum procedures such as the linear one used by
transversal equalizer/thresholders and the nonlinear decision equation
that will be used here. Some insight into the statistical structure of this
dependent sample problem can be obtained by examining the joint
sample space over the last v bauds.

Define the v-dimensional sequence vectors

Xn Ra
X, = Xn:—l R, = R":_l (2)
Xn—v+1 Rn—v+1



