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It should be noted that if metrics other than the euclidean are used, then the O(n log n) com-
plexity can be reduced for the set-of-points problem. In [13] it is shown that with the L1 and L∞
metrics, the maximum distance between two arbitrary sets of points can be computed in O(n)
worst-case time in two dimensions. Furthermore, in d dimensions the L∞ maximum distance can
be computed in O(nd) worst-case time.

Finally, we note that for the euclidean metric we can obtain O(n) expected running time for
any fixed dimensions d with a slight modification of the algorithm MAXDIST-1. Lemma 2.1 gen-
eralizes to higher dimensions. Furthermore, the 2d sets of maximal vectors [17] of Si are a superset
of the vertices of the convex hull of Si. Thus in the modified versions of MAXDIST-1 we first find
the maximal vector sets Smi of Si, i = 1, 2 and then we use BRUTE-FORCE to compute dmax(Sm1,
Sm2). Bentley et al. [17] have shown that the maximal vectors can be found in O(n) expected time
whenever the underlying densityf can be written as a d-fold product of densities:

                                             f(x1,..., xd) = .

These are very general conditions which are satisfied for example for the normal density.
Furthermore, Devroye [18] has shown that, under the above condition, if an O(np) (p ≥ 1) algo-
rithm is used on the resulting set of maximal vectors the algorithm has average complexity O(n).
Since computing the maximum distance by BRUTE-FORCE is an O(n2) operation, p = 2 in
Devroye’s theorem and the result follows.

One open problem in this area is to find algorithms for computing dmax in high dimensions
in sub-quadratic worst-case time. Another is to establish a super-linear lower bound on the com-
plexity of the problem. For the analogousminimum distance between sets problem, Avis [21]
shows thatΩ(n log n) is a lower bound, and Toussaint and Bhattacharya [22] exhibit algorithms
that achieve this complexity. Since it is not known whetherΩ(n log n) is a lower bound for the
dmax problem, it is an open question whether algorithm MAXDIST-2 is optimal.
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It is obvious from the analysis of MAXDIST-2 that if we replace the exact O(n log n) convex
hull computations in Step 1 with approximate O(n) convex hull algorithms, we will have met our
goal. Recently, Bentley, Faust and Preperata [23] proposed an algorithm that computes an ε-ap-
proximate convex hull of n points on the plane in O(n + 1/ε) worst-case time. As pointed out in
[23], this algorithm yields an ε-approximate diameter algorithm that runs in O(n + 1/ε) time. Clear-
ly we can obtain an approximate dmax algorithm by using the algorithm of Bentley et al. [23] in
Step 1 of the MAXDIST-2. However, all the diameter computations in Step 4 are being made on
approximate convex polygons which have themselves been obtained in Step 3 from the approxi-
mate hulls of Step 1, thus making the error-analysis somewhat involved. We can make sure that
the error-analysis of [23] carries over exactly by simply doing away with Step 1 altogether, and by
modifying Step 3 to compute the convex hulls of the unions of subsets. More precisely, we obtain
the following algorithm.

Algorithm APPROXDIST

begin

Step 1: Partition Si, i = 1, 2 into nine subsets Sij, j = 1, 2,..., 9 as described in Lemma 2.6

Step 2: Find the ε-approximate convex hull of the union of each pair of subsets S1i and S2j

            for i,j = 1, 2,..., 9 using the algorithm of Bentley et al. [23].

Step 3: Find the diameter of each convex hull determined in Step 2 as in

             algorithm MAXDIST-2

Step 4: Find the maximum diameter computed in Step 3 and output it as dmax(S1, S2).

end

It is clear from the above algorithm that when the algorithm exits with the final value of
dmax(S1, S2), say d*, then d* is the true diameter of a convex polygon which is itself the approxi-
mate convex hull of a set of points S1i ∪ S2j for some i and j. Since d* is the ε-approximate diam-
eter obtained from the algorithm of Bentley et al. [23], and since the complexity of APPROXDIST
is obtained by Step 2, it follows that algorithm APPROXDIST computes the ε-approximate max-
imum distance between two sets in O(n + 1/ε) worst-case time.

6.  Concluding Remarks

We have shown in this paper that given two planar point sets, S1 and S2, with a total of n
points, the maximum euclidean distance between S1 and S2 can be computed in O(n log n) time in
the worst case. We have also shown that if S1 and S2 are simple polygons, then the maximum eu-
clidean distance between S1 and S2 can be computed in O(n) worst-case time.
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Algorithm                  n = 10(125)                  n = 100(50)                   n = 1000(15)                5000(10)
Time          Std. dev.     Time          Std. dev.     Time          Std. dev.     Time          Std. dev.

BRUTE-FORCE
MAXDIST-1
MAXDIST-2

0.0389
1.41
2.22

0.0157
0.0969
0.348

25.9
 5.73
 7.13

0.0452
0.406
0.437

2570
39.2
40.7

4.69
2.01
1.97

---
178
180

---
4.89
4.81

TABLE 1
Average Run Times (msec) for Computing the Maximum Distance

between Two Sets, Each Containing n Points Uniformly
Distributed in Adjacent Non-overlapping Unit Squaresa

aIn all tables, the numbers in parentheses indicate the number of times the experiment was repeated.

Algorithm                  n = 10(125)                  n = 100(50)                   n = 1000(15)                5000(10)
Time          Std. dev.     Time          Std. dev.     Time          Std. dev.     Time          Std. dev.

MAXDIST-1
MAXDIST-2

1.41
2.01

0.098
0.201

 5.73
 7.51

0.397
0.625

39.2
41.8

2.01
2.05

178
182

4.77
4.85

TABLE 2
Average Run Times (msec) for Computing the Maximum Distance

between Two Sets, Each Set Uniformly Distributed in the Same Unit Square.

Algorithm                  n = 10(125)                  n = 100(50)                   n = 1000(15)                5000(10)
Time          Std. dev.     Time          Std. dev.     Time          Std. dev.     Time          Std. dev.

MAXDIST-2 2.83 0.287 51.1 0.286 575 17.7 2914 85.1

TABLE 3
Average Run Times (msec) for Computing the Maximum Distance in a

Worst-Case Situation, Each Set Containing n Points
Uniformly Distributed on a Circleb

bBoth circles have unit radius, one is centered at (-1, 1), while the other is centered at (-1, 1.5).
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as linearly unseparable sets, and the third to observe the algorithms’ worst-case behavior. For sim-
plicity, the number of points in each set was kept equal to n. The experiments were performed with
n = 10, 100, 1000 and 5000. Each experiment was repeated a number of times. The average running
times along with their standard deviations are given in Tables 1, 2, and 3. These times were ob-
tained for programs compiled with a FORTRAN G1 compiler (with source optimization level 0),
and executed on an AMDAHL V-7 computer at McGill University’s Computing Center.

In the first set of experiments, points of both sets S1 and S2 were generated such that each set
was distributed uniformly in adjacent side-to-side non-overlapping unit squares. The results are
shown in Table 1. It is clear from the table that for very small n, (n = 10), the BRUTE-FORCE
method is the fastest. For medium sized data sets (n = 100, 1000), MAXDIST-1 is the fastest, and
for large sets, MAXDIST-1 and MAXDIST-2 are equally efficient. Comparing the MAXDIST al-
gorithms to BRUTE-FORCE, we see that for n = 100 they run four times faster than BRUTE-
FORCE, and for n = 1000, sixty times faster.

In the second set of experiments, both sets S1 and S2 were generated such that each set was
distributed uniformly in the same unit square. These experiments were performed in order to de-
termine whether linear separability between S1 and S2 had any appreciable effects on the algo-
rithms’ running time. The results shown in Table 2 indicate that the differences are insignificant.
No times are given to for the BRUTE-FORCE algorithm, since in this case linear separability in
no way affects the algorithm.

In the third set of experiments, both sets S1 and S2 were generated such that each set was dis-
tributed uniformly on intersecting circles. ThusN1 = N2 = n. The results are shown in Table 3. In
this situation, the MAXDIST algorithms are at their worst. MAXDIST-1 is clearly always worse
than BRUTE-FORCE, since in addition to BRUTE-FORCE it computes convex hulls in vain. Thus
no times are shown for MAXDIST-1. For MAXDIST-2, we notice that BRUTE-FORCE is faster
for n ≤ 100. However, by the time n =1000, MAXDIST-2 runs four times faster than BRUTE-
FORCE.

The above results clearly indicate the desirability of MAXDIST-2 in terms of running time.
However, to more fully appreciate the algorithms, a practitioner may be interested in the lengths
of the codes. The BRUTE-FORCE algorithm requires about 35 lines of source code. The
MAXDIST algorithms depend on a convex hull program. The convex hull code, CONHUL, used
in these experiments [24] requires about 390 lines, resulting in a total of 425 and 580 lines, respec-
tively, for MAXDIST-1 and MAXDIST-2. However, these programs can be reduced by approxi-
mately 180 lines by using the more recent convex hull program, HULL, [25] which runs only mar-
ginally slower than CONHUL.

5.  Approximate Algorithms

In some applications, obtaining an approximate solution quickly is more important than ob-
taining an exact answer at the cost of additional computation. In this section, we point out that an
approximation to the maximum distance between sets can be computed in worst-case timelinear
in the number of input points, and that this approximation can be made as close to the true distance
as desired.
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Worst-Case Analysis

Step 1 can be computed in O(n log n) time [6]. Step 2 is clearly an O(n) operation. In Step 3
we need to find the convex hull of pairs of possibly overlapping convex polygons. Shamos [4] and
Toussaint [13] exhibit simple O(n) algorithms for computing the convex hull of two convex poly-
gons with a total of n vertices. Since the total number of vertices in all the convex polygons in
CH(Si), i = 1, 2 is Ni ≤ n, Step 3 can be done in O(n) time using the algorithms in [4] or [13]. The
diameter of a convex n-gon can also be found in O(n) time using the “antipodal-pair” algorithm of
Shamos [3]. Since the total number of vertices of all the convex polygons computed in Step 4 is
O(n), it follows that Step 4 can be computed in linear time. Note that although Steps 3 and 4 involve
81 diameter computations, the “big-oh’s” are not “hiding” constant factors of 81, as might appear
at first glance. It is easy to see that the factor is in fact only 18. Finally, Step 5 can be done in time
O(1), since it involves finding the maximum of at most 81 diameters. Thus, the entire algorithm is
dominated by Step 1 and runs in O(n log n) time.

Expected Analysis

Since all steps other than Step 1 run in linear or sub-linear time, we need only be concerned
with finding the convex hull in O(n) expected time. Again, many algorithms that run in linear ex-
pected time for some distributions are given in [12]. The use of any of these CH algorithms will
yield a similar complexity for the MAXDIST-2 algorithm.

The Maximum Distance between Polygons

It is known that the convex hull of a simple n-vertex polygon can be computed in O(n) time
[14-16]. Thus if S1 and S2 are simple polygons, Step 1 of algorithm MAXDIST-2 runs in O(n) time
and we have the following theorem.

Theorem 3.3: The maximum distance between two simple polygons with a total of n vertices can
be computed in O(n) time in the worst case.

Note that if in addition S1 and S2 are convex, then we can dispense with Step 1 altogether.

4.  Experimental Results

In the implementation of both algorithms, the convex hulls in Step 1 were computed using
the algorithm of Akl and Toussaint [19]. This algorithm is a modification of Graham’s algorithm
[20], which first discards most points from consideration and subsequently sorts the remaining
points along the x-coordinate. It runs in O(n log n) time in the worst-case and O(n) expected time
under the conditions described in [12]. Step 3 in MAXDIST-2 was implemented using the algo-
rithm of Toussaint [13], which runs in time linear with the total number of vertices of the two con-
vex polygons being merged. Finally, the computation of diameters in Step 4 was done using Sha-
mos’ “antipodal-pair” algorithm [13].

The BRUTE-FORCE method, MAXDIST-1, and MAXDIST-2 were compared experimen-
tally by performing a Monte-Carlo simulation. Three sets of experiments were performed: the first
two to compare the expected performance of the algorithms operating on linearly separable as well
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where C(CH) is the complexity of finding the convex hulls in Step 1, and the ki are positive con-
stants. Taking the expected value of Eq. (9) yields

E{C} = E{C(CH)} + k1E{N1} + k2E{N2} + k3E{N1N2} + k4

≤ E{C(CH)} + k1E{N1} + k2E{N2} + k3E{N } + k3E{N } + k4.                       (10)

Devroye [10] has shown for the above conditions that E{N } = O(( )p) for any p ≥ 1, i =
1, 2. Thus with p = 2 in Devroye’s theorem, (10) becomes

                                        E{C} ≤ E{C(CH)} + O(n).                                                        (11)

Now E{Ni} ≤  for many distributions. A list of distributions satisfying this condition ap-
pears in [11]. For example, when the points in Si are uniformly distributed in a convex polygon of
k sides, where k is fixed, then E{Ni} = O(log n) [7-9], where it is also established that for normal
distributions E{Ni} = O( ); see also [10]. Many convex hull algorithms, such as that of Bent-
ley and Shamos [11], run in O(n) expected time under these conditions. Therefore E{C} = O(n).
For a survey of linear expected time CH algorithms, the reader is referred to [12].

Algorithm MAXDIST-2

begin

Step 1: Compute CH(S1) and CH(S2).

Step 2: Partition CH(Si) i = 1, 2 into nine subsets CH(Sij), j = 1, 2,..., 9 as described

             in the previous section.

Step 3: Find the convex hull of the union of each pair of subsets

             CH[CH(S1i) ∪ CH(S2j)]

              for i, j = 1, 2,..., 9.

Step 4: Find the diameter of each convex polygon determined in Step3.

Step 5: Find the maximum diameter computed in Step 4.

{diam[CH(S1i) ∪ CH(S2j)]},

             and output it as dmax(S1, S2).

end

Theorem 3.2:  Algorithm MAXDIST-2 computes the maximum distance between S1 and S2.

Proof: The correctness of Step 1 follows from Lemma 2.1. Because the diameter of a set is equal
to the diameter of the convex hull of the set (see [3-4]), Steps 3 and 4 correctly compute the
diameter of CH(S1i) ∪ CH(S2j). Finally, the correctness of Steps 2 and 5 follows directly
from Theorem 2.1.                                                                                                       Q.E.D.

2

1

2
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p
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nlog

max

i j,
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      for j = 1 to n

begin

if d(pi, qj) > dmax(S1, S2)

then dmax(S1, S2) <-- d(pi, qj)

end

end

Clearly, the above algorithm always runs on O(n2) time.

Algorithm MAXDIST-1

begin

   Step 1: Compute CH(S1) and CH(S2).

   Step 2: Compute dmax(CH(S1), CH(S2)) using the brute-force method, and output it as

              dmax(S1, S2).

end

Theorem 3.1: Algorithm MAXDIST-1 computes the maximum distance between two sets S1, S2.

Proof: The proof follows directly from Lemma 2.1.

Worst-Case Analysis

In the worst case, Step 1 requires O(n log n) time. For a survey of O(n log n) convex hull
algorithms, the reader is referred to [6]. In the worst case, all points of Si will be vertices of CH(Si),
i = 1, 2, and thus Step 2 will run in O(n2) time. Thus, the worst-case complexity of MAXDIST-1
is dominated by Step 2 and is O(n2).

Expected Analysis

Here we assume that S1 = {p1, p2,..., pn1
} consists of n1 points drawn independently at ran-

dom from some common underlying distribution f1. A similar assumption is made concerning S2
= {q1, q2,..., qn2

} with respect to f2. Note that S1 and S2 may be dependent, and f1 need not be iden-
tical to f2. Let N1 and N2 be the number of points in CH(S1) and CH(S2), respectively. N1 and N2
are possibly dependent random variables. We further assume that the expected value of Ni, E{Ni}
≤  and n1 + n2 ≤ n. Then the complexity C of MAXDIST-1 is given by

                           C = C(CH) + k1N1 + k2N2 + k3N1N2 + k4,                                                (9)

n
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Applying Lemma 2.4 yields:

          dmax(S1k, S2k’) = diam(S1k ∪ S2k’),                                                                          (6)

and from (1)

          dmax(S1, S2) = diam(S1k ∪ S2k’).                                                                              (7)

Now we show that the diameter of the union of the subsets of points containing the pair that realizes
the maximum distance between the two sets is greater than the diameter if the union if any other
pair of subsets, i.e.,

          diam(S1k ∪ S2k’) > diam(S1i ∪ S2j)

                                       for i, j = 1,...,9, i≠k, and j≠k’.                                                      (8)

Assume that there exists a pair of subsets S1r, S2s such that diam(S1r ∪ S2s) > diam(S1k ∪ S2k’).
Two cases arise: (A) the two points realizing diam(S1r ∪ S2s) both belong to either S1r or S2s, or
(B) one point belongs to S1r and the other to S2s. In case (A), it follows from Lemma 2.6 that

          diam(S1r) < dmax(S1, S2),

          diam(S2s) < dmax(S1, S2).

Furthermore, from Eq. (7) we have

          diam(S1r) < diam(S1k ∪ S2k’),

which is a contradiction. In case B, if one point of diam(S1r ∪ S2s) belongs to S1r and the other to
S2s, then we have a distance between S1 and S2 that is greater than diam(S1k ∪ S2k’) = dmax(S1,
S2) by Eq. (7), thus also creating a contradiction and establishing Eq. (8). Substituting Eq. (8) into
Eq. (7) yields

dmax(S1, S2) = {diam(S1i ∪ S2j)}.                                                                      Q.E.D.

3.  The Algorithms

In this section we describe two algorithms for computing dmax(S1, S2), prove their correct-
ness and analyze their worst-case and expected running times. Since these algorithms are also com-
pared with a brute-force algorithm, we also describe the latter.

Algorithm BRUTE-FORCE

   dmax(S1, S2) <-- 0

   for i = 1 to n

begin

max

i j,
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p

q

Ri

From Lemma 2.6 it follows that

          diam(S1k) < dmax(S1, S2)                                                                                           (2)

and

          diam(S2k’) < dmax(S1, S2).                                                                                         (3)

Substituting (2) and (3) in (1) yields

          diam(S1k) < dmax(S1k, S2k’)                                                                                       (4)

and

          diam(S2k’) < dmax(S1k, S2k’),                                                                                     (5)

which implies that dmax(S1k, S2k’) > max [diam(S1k), diam(S2k’)].

r’

r
S1 ∪ S2

Fig. 5. Both points realizing dmax(S1, S2) cannot be nonconvex hull points of S1 ∪ S2.

b

l

Fig. 6. Rectangle Ri is an encasing rectangle of Si and it is partitioned into nine equal sub-rectangles.
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S1

S2

b

c

a

S1
S2 b

a

Fig. 2. An example where dmax(S1, S2) = diam(S1 ∪ S2) = d(a, b).

Fig 3. An example where dmax(S1, S2) = d(a, b) ≠ diam(S1 ∪ S2) = d(a, c).

S1

S2

c

a

b

Fig. 4. Even if S1 and S2 are linearly separable both points realizing dmax(S1, S2) need not belong
           to the convex hull of S1 ∪ S2. Here dmax(S1, S2) = d(a, b) ≠ diam(S1 ∪ S2) = d(a, c), and
          b ∉ CH(S1 ∪ S2).
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Proof: Consider only the set S1; similar arguments hold for S2. First enclose the set S1 in a rect-
angle R1 with sides parallel to the x and y axes determined by the extreme points in the x and
y directions. Let px min be a point in S1 with minimum x coordinate. Define px max, py min, py

max similarly. Let l = xx max-xx min, b = yy max-yy min, and l > b. Thus diam(S1) ≥ l.

The rectangle R1 is now partitioned into nine sub-rectangles R1i, i = 1, 2,..., 9, each of length
l/3 and breadth b/3, as illustrated in Fig. 6. Let Sli denote the set of points of S lying in Rli;
thus Sl = . It follows that for each i, i= 1, 2,..., 9 we have:

diam(Sli) ≤ diagonal of Rli

                 = (l/3)

                 < 0.5l                           since l > b and /3 < 0.5

                 < 0.5 diam(S1)           since diam(S1) ≥ l

                 < 0.5 max [diam(S1), diam(S2)]

                 < dmax(S1, S2)           by lemma 2.5

                                                                                                                                   Q. E. D.

Theorem 2.1:    dmax(S1, S2) =  {diam(Sli ∪ S2j)}.

Proof: Let dmax(S1, S2) = d(pi, qj), where pi ∈ S1 and qj ∈ S2, and assume without loss of gen-
erality that pi ∈ S1k and qj ∈ S2k’. Then we have

          dmax(S1, S2) = dmax(S1k, S2k’)                                                                                (1)

Sl i
1

9

∪

l
2

b
2

+

2

max

i j,

p

r3

r2

q

r1

Fig. 1. Given a point p ∈ S1, for every q ∈ S2 and q  ∉ CH(S2) there exists a convex
  hull point r1 ∈ S2 such that d(p, r1) > d(p, q).
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It should be noted that the claim made by several authors (such as Duda and Hart [1] and
Johnson [2]) that dmax(S1, S2) = diam(S) is not always true. Were this so, there would be no need
for this paper since the diameter of S1 ∪ S2 could be found in O(n log n) time with either the con-
vex hull approach of Shamos [3, 4], or the furthest-point Voronoi diagram method of [5]. Although
the idea of using the furthest-point Voronoi diagram to find the diameter of a set is originally due
to Shamos [4], his algorithm is based on another invalid claim that the diameter is an edge in the
dual of the Voronoi diagram. A counter-example to this claim and a modified diameter algorithm
are given in [5]. Figure 2 illustrates an example where dmax(S1, S2) = diam(S). Figure 3 shows an
example where dmax(S1, S2) ≠ diam(S). Note that in Fig. 3 one of the points realizing dmax(S1, S2)
is not part of CH(S). This can remain true even if S1 and S2 are linearly separable as illustrated in
Fig. 4. However, in the following lemma we establish that of the points realizing dmax(S1, S2), at
least one of them must belong to CH(S).

Lemma 2.3: One of the points realizing dmax(S1, S2) must be a vertex of CH(S).

Proof: Let p ∈ S1, and q ∈ S2 realize dmax(S1, S2) with p, q ∉ CH(S), and refer to Fig. 5. Con-
struct lines through p and q perpendicular to the line segment joining p and q. Let H(p, q)
denote the closed half-plane, determined by the perpendicular through p, which does not con-
tain q. Since p and q are not vertices of CH(S), there exists at least one vertex of CH(S) in
H(p, q). The same holds for H(q, p). Let r and r’ be two such points. Since d(p, q) = dmax(S1,
S2), d(p,q) < d(p, r), and p ∈ S1, it follows that r ∈ S1. Similarly, we can conclude that r’ ∈
S2. Thus there exist two points r, r’ ∈ H(p, q) ∪ H(q, p) such that d(r, r’) > d(p, q), which is
a contradiction. Therefore p and q cannot both be nonconvex hull points of S.          Q.E.D.

Lemma 2.4: If dmax(S1, S2) > max[diam(S1), diam(S2)], then we have dmax(S1, S2) = diam(S).

Proof: By partitioning the complete set of pairs of points of S into three subsets we can write:

diam(S) = max{  [d(pi, qj)],  [d(pi, pj)],  [d(qi, qj)]}

               = max {dmax(S1, S2), diam(S1), diam(S2)}

               = dmax(S1, S2)                                by assumption.                                       Q.E.D.

Lemma 2.5: dmax(S1, S2) ≥ 0.5 max [diam(S1), diam(S2)].

Proof: Without loss of generality assume that diam(S1) ≥ diam(S2) and let pi, pj realize
diam(S1). Let q be a point of S2. Then, by the triangle inequality,

d(pi, q) + d(q, pj) ≥ d(pi, pj).

Furthermore, without loss of generality assume d(pi, q) ≤ d(pj, q). Then we have 0.5 d(pi, pj) ≤
d(pj, q) ≤ dmax(S1, S2). Since d(pi, pj) = diam(S1) ≥ diam(S2), the lemma follows.          Q. E. D.

Lemma 2.6: Each set S1 and S2 can be partitioned into nine subsets such that the diameter of
each subset is less than dmax(S1, S2).

max

i j,
max

i j,
max

i j,
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dmean(S1, S2) = d(m1, m2),

where

m1 = 1/n  and m2 = 1/n

Clearly dmean(S1, S2) can be computed in O(n) time. Duda and Hart [1] point out that dmean
is computationally more attractive than dmax by claiming that dmax requires the computation of all
n2 distances, resulting in an O(n2) algorithm.

In this paper we show that dmax(S1, S2) can be computed in O(n log n) time in the worst case.
A second algorithm that first computes the convex hulls of S1 and S2 runs in O(n2) worst-case time.
Both algorithms achieve O(n) expected running time for many underlying distributions of the
points. Furthermore, when S1 and S2 are simple polygons, dmax(S1, S2) can be computed in O(n)
time in the worst case.

After establishing some preliminary results in Section 2, the algorithms and their complexity
analyses are presented in Section 3. Section 4 describes timing experiments comparing the above
algorithms with each other and the brute-force method. An ε-approximation algorithm that runs in
O(n + 1/ε) time is presented in Section 5. Some concluding remarks are made in Section 4.

2.  Preliminary Results

Let CH(Si), i = 1,2 denote the set of points of Si that are vertices of the convex hull of Si.
Denote the diameter of Si by diam(Si). For example, for the set S1 we have

diam(S1) =  {d(pi,pj)}, i, j = 1,2,...,n.

We now establish a series of results which will form the theoretical foundation for the algo-
rithms of Section 3.

Lemma 2.1:          dmax(S1, S2) = dmax(CH(S1), CH(S2)).

Proof: Let p ∈ S1, and let q ∈ S2 such that q ∉ CH(S2). Construct a circle C centered at p with
radius d(p, q), and refer to Fig. 1. Since q ∉ CH(S2), there exists at least three vertices r1, r2,
r3 ∈ CH(S2) such that q lies in the triangle formed by r1, r2, and r3. Therefore, at least one
point, say r1, must lie outside the circle C. Thus d(p, q) < d(p, r1) and d(p, q) cannot be
dmax(S1, S2). Since the argument holds whether p does or does not belong to CH(S1), it fol-
lows that if p ∉ CH(S1) and/or q ∉ CH(S2), then p, q cannot realize dmax(S1,S2). Therefore,
if p, q realize dmax(S1, S2), then p ∈ CH(S1) and q ∈ CH(S2).                                Q.E.D.

Lemma 2.2:          dmax(S1, S2) ≤ diam(S).

Proof: By definition, diam(S) = diam(S1 ∪ S2) is the maximum over the complete set of dis-
tances G of S. On the other hand, dmax(S1, S2) is the maximum over a set of distances G’.
Since G’ ⊆ G, the lemma follows.                                                                              Q.E.D.

pi
i 1=

n

∑ qi
i 1=

n

∑

max
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ABSTRACT

An O(n log n) algorithm is presented for computing the maximum euclidean dis-
tance between two finite planar sets of n points. When the n points form the ver-
tices of simple polygons this complexity can be reduced to O(n). The algorithm is

empirically compared to the brute-force method as well as an alternate O(n2) al-

gorithm. Both the O(n log n) and O(n2) algorithms run in O(n) expected time for
many underlying distributions of the points. An ε-approximate algorithm can be
obtained that runs in O(n + 1/ε) worst-case time.

1.  Introduction

Let S1 = p1, p2,..., pn and S2 = q1, q2,..., qn be two planar sets of n points, and let
S = S1 ∪ S2. (The sets need not have equal cardinality, but this assumption simplifies notation.) A
point pi is given by the cartesian coordinates xi and yi. The maximum distance between S1 and S2,
denoted by dmax(S1, S2), is defined as

dmax(S1, S2) = {d(pi,qj)}, i, j = 1,2,...,n,

where d(pi,qj) is the euclidean distance between pi and qj.

The computation of distances between sets arises in pattern recognition problems [1], where
clustering is a prime example. In agglomerative (bottom-up) clustering procedures, one starts with
a set of N clusters each containing one of N points to be clustered. The two most similar clusters
are then merged to form N-1 new clusters. This procedure is continued by successively merging
clusters. What distinguishes many clustering algorithms is the measure of similarity used to deter-
mine which pair of clusters gets merged at a given step. When dmax is used, the resulting algorithm
is known as the furthest neighbor clustering algorithm [1]. Another frequently used distance be-
tween sets is

max

i j,
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