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SincePnw andQR are two linearly separable convex polygonsdmin(Pnw, QR) can be solved with
the techniques of [4] and [5]. Thus we turn our attention todmin(Pnw, QL). We can decompose this
problem into two subproblems by splittingQL into two convex polygonsQL-out and QL-in, whose
vertices lie outside Pnw and insidePnw, respectively. We can determine all the sub-chains ofQL
that lie inside and outsidePnw, and thusQL-out and QL-in, by applying the simple linear algorithm
of O’Rourkeet al. [10] to intersect the two convex polygonsPnw andQL. We are left to solve for

Now dmin(Pnw, QL-out) is taken care of by theorem 2.1. Finally, sinceQL-in lies completely inside
Pnw, dmin(Pnw, QL-in) is nothing but case 1 revisited.

Therefore case 2 can also be solved in O(m+n) time. It is possible to determine in O(log
(m+n)) time whether the interiors ofP andQ intersect or not [11]. If the interiors intersect it is more
difficult to determine whether one polygon is entirely inside another and, in fact, Chazelle [9] has
proved anΩ(m+n) lower bound for this problem. However, using the linear intersection algorithm
of O’Rourkeet al. [10] we can solve this problem in O(m+n) time by merely checking to see if all
the vertices ofP ∩ Q belong to only one of there polygons. We therefore have the following result.

Theorem 4.1: The minimum vertex-distance between two convex polygonsP andQ of m andn
vertices, respectively, can be computed in O(m+n) time.

5.  Open Problems

Several interesting problems remain. One pertains to three dimensions. Given two convex
polyhedra in three dimensions is it possible to compute the minimum vertex distance in o(mn) time.
Another open question concerns the planar all-nearest-distance-between-sets problem. Here, given
two convex polygonsP andQ we want to find, in O(m+n) time, for each vertex inP (or Q) the
nearest vertex inQ (orP). In section two we saw a solution to this problem in the special case when
one polygon has the semi-circle property and the other is “correctly” situated with respect to the
first.

Finally, no linear algorithm exists for computing the Voronoi diagram of a convex polygon.
In section 2 we saw how to compute, in linear time, the Voronoi diagram of asemi-circle polygon
Ps within the regionRH(pi, pi+1) outsidePs, where  is the diameter ofPs. However, no linear
algorithms exist for computing the Voronoi diagram in the interior ofPs or in LH(pi, pi+1). Such
algorithms would allow us to solve the problem for arbitrary convex polygons since we can decom-
pose a convex polygon into foursemi-circle polygons in linear time and we can merge the four
Voronoi diagrams in linear time.
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4.  Case 2: P and Q Are Arbitrary Crossing Polygons

Let P and Q be two convex polygons arbitrarily placed. In this case the boundaries of P and
Q may have as many as m + n proper intersection points. We will exhibit a decomposition of this
problem into at most 12 subproblems such that each of these can be solved by either the algorithms
in [4] and [5], theorem 2.1 of this paper, or the procedure for case 1.

Problem decomposition

 Step 1: This step is identical to step 1 for case 1: Thus we must solve four problems now of the
form dmin(Pnw, Q). (See Fig. 4.) We decompose this problem further into 3 subproblems.

Step 2: Draw a line L through pxmin and pymax and determine the intersections that L makes with Q
as before. L partitions Q into two polygons, as before, QR and QL and

dmin Pnw Q,( ) min dmin Pnw QR,( ) dmin Pnw QL,( ),{ }=

QL-out

QL-in

L

Pnw

px min

qre

qrb

qle
py max

QR

P

Fig. 4.

qlb
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and therefore we need only solve four problems of the form dmin(P, Q), i.e., a semi-circle polygon
lying completely inside a convex polygon. We will further decompose each such problem into two
subproblems as follows:

Step 2: Draw a line L through pymax and pxmin and determine the intersection points of L with the
boundary of Q. This can be done in O(log n) time with an algorithm of Chazelle [9]. Without loss
of generality assume L is vertical for convenience and refer to Fig. 3. The line L partitions the plane
into two half planes RH(pxmin, pymax) and LH(pxmin, pymax). It also partitions Q into two convex
polygons Ql = (qlb,..., qle) and Qr = (qrb,..., qre), where  and  are the edges of Q inter-
sected by L. Note that if L intersects some vertex qi of Q then we may have qle = qi = qrb. Further-
more QL ∈ LH(pxmin, pymax) and QR ∈ RH(pxmin, pymax). We now have

To solve for dmin(Pnw, Ql) we can invoke theorem 2.1. Finally, since Pnw and QR are linearly sep-
arable, dmin(Pnw, QR) can be solved with the techniques of [4] and [5]. Therefore case 1 can be
solved in O(m+n) time.

dmin P Q,( ) min dmin Pne Q,( ) dmin Pse Q,( ) dmin Psw Q,( ) dmin Pnw Q,( ),, ,{ }=

qleqrb
qreqlb

dmin Pnw Q,( ) min dmin Pnw QL,( ) dmin Pnw QR,( ),{ }=

Fig. 3.
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3.  Case 1: P Lies Entirely Inside Q

Without loss of generality let us assume that P lies inside Q, i.e., P ∪ Q = Q. We will decom-
pose this problem into at most eight subproblems, four of which are linearly separable and can be
solved with the techniques of [4] and [5], and four which are taken care of by theorem 2.1 in this
paper. First we decompose P into four semi-circle polygons. Both Lee and Preparata [7] and Yang
and Lee [8] give O(m) algorithms for obtaining such a decomposition. We select the latter [8] be-
cause it is simpler and does not require the computation of the diameter as in [7].

Problem decomposition

Step 1: Find pxmax, pxmin, pymax, and pymin, the vertices of P with extreme x and y coordinates. (See
Fig. 2.) We then obtain four convex polygons with the semi-circle property:

Note that if two vertices have the same coordinate, for example pymax, then the left vertex is asso-
ciated with Pnw and the right vertex with Pne and so on.

Now, denoting the minimum vertex distance between P and Q by dmin(P, Q), we have that

Pne pymax … pxmax, ,( )=

Pse pxmax … pymin, ,( )=

Psw pymin … pxmin, ,( )=

Pnw pxmin … pymax, ,( )=

P Q

pymax

pymin

pxmin
pxmax

Fig. 2.
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 must intersect  at . Thus it follows thatRB(pk, pl) must intersect  at
some point, sayx. Similarly, the⊥ bisector of  must intersect  at some point say
y. Furthermore, sinceangle  the intersection ofRB(pj, pk) andRB(pk, pl), sayz,
must lie inRB(pj, pk) ∩ RB(pk, pl). If x lies abovey thenz∈ RB(pi+ 1, pi) and we are done. If
x lies belowy, thenz ∈ LH(pi+ 1, pi) and we must show that z∈ Ps. Therefore assumex lies
belowy. Construct triangles  and . From convexity it follows that

 and . Therefore, the portion ofRB(pk, pl) to the left ofL lies inPs and also
the portion ofRB(pj, pk) to the left ofL lies inPs. Thereforez∈ Ps. Since the tripletpj, pk, pl
was arbitrary it follows that all O(n3) local Voronoi vertices ofPs lie in Ps or RH(pi+ 1, pi).
Since a Voronoi vertex ofVD(Ps), orglobal Voronoi vertex, belongs to a subset of thelocal
vertices it follows that all O(n) Voronoi vertices ofVD(Ps) lie in Ps or RH(pi+ 1, pi).   Q.E.D.

This theorem implies that the Voronoi diagram ofPs in the region to the left ofL and exterior
to Ps is completely determined by the partition imposed by the⊥ bisectors of the edges

. Therefore, in this region the Voronoi diagram can be constructed
in O(n) time. Furthermore, the “layered” structure of the Voronoi diagram implies thatn query
points forming a convex chainCQ = (q1, q2,...,qn), such that its vertices lie in such a region, can
be searched for point location in a total running time of O(n). Thus for this special situation the
nearest pointPs to each point inCQ can be solved in O(n) time. It follows that the minimum-ver-
tex-distance in betweenCQ andPs can be computed in O(n) time.

pk′ pi pi 1+ pk″ pi pi 1+
p j pk pi pi 1+

p j
′
pk

′
pl

′
180°<

xpkpl∆ ∆x≡ yp j pl∆ ∆y≡
∆x Ps∈ ∆y Ps∈

pi 1+ pi 2+ pi 2+ pi 3+ … pi 1– pi, , ,

x

y
z

pl“

pipl’
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pk’
pj

pk“

pi+ 1

C

L

Fig.1.
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is based on existing results on the relative neighborhood graph [6]. With trivial modifications the
algorithms in [4] and [5] also work if only the edges ofP andQ intersect, i.e., as long as the inte-
riors of the polygons do not intersect.

In this paper we show that when the interiors ofP andQ intersect the minimum vertex dis-
tance can also be computed in O(m+n) time. The problem is split into two cases: the case when
one polygon is completely contained in the other and the case where this is not true. The key result
for obtaining a solution to both cases consists of decomposing a convex polygon into parts associ-
ated with regions on the plane where the Voronoi diagram can be computed in linear time. This
result is presented in section 2. Section 3 describes the algorithm for the case when one polygon is
contained in the other and the case where this is not true is treated in section 4. Finally section 5
discusses some open problems.

2.  Preliminary Results

Lee and Preparata [7] obtained a linear-time algorithm for the all-nearest-neighbor problem
for a convex polygonP by decomposingP into foursemi-circle polygons. Consider the following
conditions:

(i) The two farthest points of P are the extremes of an edge, i.e., diameter(P) = d(pi, qi+1) for
somei.

(ii) All the vertices ofP lie inside a circle with diameter equal to the diameter ofP. A convex
polygon that satisfies both (i) and (ii) is asemi-circle polygon.

Semi-circle polygons have some very special properties. The property used in [7] is the fact
that for any vertexpi its nearest neighborpj is adjacent topi, i.e., it is eitherpi+1 or pi-1. In this sec-
tion we prove another special property ofsemi-circle polygons. They admit a partition of the plane
into special regions, needed for solving the minimum vertex-distance problem, where the Voronoi
diagram can be constructed in linear time. Furthermore, this Voronoi diagram can be searched for
point location of a linear number of query points in linear time when the query points are vertices
of a convex polygonal chain.

Let L(pi, pj) denote the directed straight line throughpi andpj in that order. LetRH(pi, pj)
denote the closed half-plane lying to the right ofL(pi, pj), i.e., it includes L(pi, pj). If it does not
include the line it will be referred to as open. AlsoLH will refer to left half-plane. LetVD(P) denote
the Voronoi diagram of the vertices ofP, B(pi, pj) the perpendicular (⊥) bisector of the line seg-
ment joiningpi andpj, and letRB(pi, pj) denote that part ofB(pi, pj) lying to the right ofL(pi, pj).

Theorem 2.1: Given a convex polygonPs of n sides with the semi-circle property with respect to

edge  then the Voronoi vertices ofVD(Ps) all lie in Ps or in openRH(pi+1, pi).

Proof: Without loss of generality, we assume  is vertical. Letpj, pk, pl be any ordered trip-
let of vertices ofPs. The local Voronoi vertex of this tripletvjkl is determined by the intersec-
tions of the⊥ bisector of  and . Extend  to intersect the semi-circleC atpl’ and
extend  to intersect atC atpk’. (Refer to Fig. 1.) Sinceangle  it follows that
the ⊥ to L(pk, pl) at  intersects  at . Since , the⊥ to L(pk, pl) at

pi pi 1+

pi pi 1+

p j pk pk pl pk pl
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An Optimal Algorithm for Computing the Minimum Vertex
Distance Between Two Crossing Convex Polygons*

Godfried Toussaint
School of Computer Science

McGill University
Montreal, Quebec, Canada

ABSTRACT

Let P = {p1, p2,..., pm} and Q = {q1, q2,..., qn} be two intersecting polygons whose
vertices are specified by their cartesian coordinates in order. An optimal O(m+n) al-
gorithm is presented for computing the minimum euclidean distance between a vertex
pi in P and a vertex qj in Q.

Key words: Algorithms, complexity, computational geometry, convex polygons, min-
imum distance, Voronoi diagrams.

1.  Introduction

Let P = {p1, p2,..., pm} and Q = {q1, q2,..., qn} be two convex polygons whose vertices are
specified by their cartesian coordinates in clockwise order. We assume the polygons are in stan-
dard form, i.e., no three vertices are collinear. Let d(x, y) denote the euclidean distance between
points x and y. Considerable attention has been given recently to the problem of computing extre-
mal distances between convex polygons due to their application in pattern recognition and collision
avoidance problems [1], [2]. One such problem consists of finding the minimum distance between
the polygons, i.e., zero if the polygons intersect and the minimum distance d(x, y) realized by a pair
of points x ∈ P, y ∈ Q, if P and Q do not intersect. Edelsbrunner [1] describes an optimal O(log m
+ log n) algorithm for solving this problem. This improves an earlier algorithm for this problem
due to Schwartz [2] which runs in O((log m)(log n)) time.

A more difficult problem is to find the minimum vertex distance between P and Q, i.e., the
minimum distance d(x, y) where x and y are restricted to being vertices of P and Q, respectively.
The naive method of computing d(pi, qj) for all i and j requires, of course, O(mn) time. By com-
puting supergraphs of the minimal spanning tree of the union of the vertices of P and Q Toussaint
and Bhattacharya [3] have shown that this problem can be solved in O((m+n) log (m+n)) time. The
methods of [3] however do not exploit the fact that P and Q are convex.

Recently McKenna and Toussaint [4] and Chin and Wang [5] independently discovered op-
timal O(m+n) algorithms for solving this problem in the special case where P and Q are linearly
separable, i.e., the polygons do not intersect. The algorithm in [4] differs from that in [5] in that it

*   Research supported by NSERC grant no. A9293.


