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SinceP,,, andQg are two linearly separable convex polygops,(Paw Qr) can be solved with
the techniques of [4] and [5]. Thus we turn our attentiah (P, Q). We can decompose this
problem into two subproblems by splittiQy into two convex polygon® .o+ andQ, i, whose
vertices lie outsid®,,, and insideP,,,, respectively. We can determine all the sub-chair, of
that lie inside and outsid®,,, and thuQ, .+ andQy__i,, by applying the simple linear algorithm
of O’'Rourkeet al. [10] to intersect the two convex polygdAg, andQ,. We are left to solve for

Clmin(in' QL) = mi n{ dmin(in’ QL-out)’ dmin(in' QL-in)}

NOoW drin(Paws QL-out) IS taken care of by theorem 2.1. Finally, si@ge, lies completely inside
Prw dmin(Prwe QL-in) 1S nNothing but case 1 revisited.

Therefore case 2 can also be solved im€X) time. It is possible to determine in O(log
(nn)) time whether the interiors &andQ intersect or not [11]. If the interiors intersect it is more
difficult to determine whether one polygon is entirely inside another and, in fact, Chazelle [9] has
proved arQ)(m+n) lower bound for this problem. However, using the linear intersection algorithm
of O’Rourkeet al. [10] we can solve this problem ini@¢n) time by merely checking to see if all
the vertices oP n Q belong to only one of there polygons. We therefore have the following result.

Theorem 4.1: The minimum vertex-distance between two convex polygbasdQ of m andn
vertices, respectively, can be computed im®&x{) time.

5. Open Problems

Several interesting problems remain. One pertains to three dimensions. Given two convex
polyhedra in three dimensions is it possible to compute the minimum vertex distamg)itimé.
Another open question concerns the planar all-nearest-distance-between-sets problem. Here, given
two convex polygon® andQ we want to find, in Q+n) time, for each vertex iR (or Q) the
nearest vertex iQ (or P). In section two we saw a solution to this problem in the special case when
one polygon has the semi-circle property and the other is “correctly” situated with respect to the
first.

Finally, no linear algorithm exists for computing the VVoronoi diagram of a convex polygon.
In section 2 we saw how to compute, in linear time, the Voronoi diagrarsegi-aircle polygon
Pswithin the regiorRH(p;, pj+1) outsidePg, wherep; p; | , is the diameter d?s. However, no linear
algorithms exist for computing the Voronoi diagram in the interid?adr in LH(p;, pj+7). Such
algorithms would allow us to solve the problem for arbitrary convex polygons since we can decom-
pose a convex polygon into fosemi-circle polygons in linear time and we can merge the four
Voronoi diagrams in linear time.

6. References
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4. Case2: Pand Q AreArbitrary Crossing Polygons

Let P and Q be two convex polygons arbitrarily placed. In this case the boundaries of P and
Q may have as many as m + n proper intersection points. We will exhibit a decomposition of this
problem into at most 12 subproblems such that each of these can be solved by either the algorithms
in[4] and [5], theorem 2.1 of this paper, or the procedure for case 1.

Problem decomposition

Step 1: This step isidentical to step 1 for case 1. Thus we must solve four problems now of the
form dyin(Pows Q). (See Fig. 4.) We decompose this problem further into 3 subproblems.

Step 2: Draw aline L through pyyin and pymax and determine the intersections that L makeswith Q
as before. L partitions Q into two polygons, as before, Qg and Q, and

dmin(in’ Q) = min{ dmin(in’ QR)’ dmin(PnW' QL)}




dmin(P’ Q) = min{ dmin(Pne’ Q)' dmin(Pse' Q)’ dmin(Psw’ Q)’ dmin(in’ Q)}

and therefore we need only solve four problems of the form d,;,(P, Q), i.e., asemi-circle polygon
lying completely inside aconvex polygon. We will further decompose each such problem into two
subproblems as follows:

Step 2: Draw aline L through pymay and pymin and determine the intersection points of L with the
boundary of Q. This can be done in O(log n) time with an algorithm of Chazelle [9]. Without |oss
of generality assumeL isvertical for convenience and refer to Fig. 3. ThelineL partitionsthe plane
into two half planes RH(Pymin: Pymax) and LH(Pymin: Pymax)- It @S0 partitions Q into two convex
polygons Q; = (qp,---» Gje) aNd Qr = (Orps-++ Ore)s Whereq and g, ,q,,, aetheedgesof Q inter-
sected by L. Notethat if L intersects some vertex g of Q ﬁ1en we may have g = gj = g,p. Further-

more Q. LI LH(Pymin: Pymax) @d Qr L RH(Pxmin, Pymax)- We now have
dmin(in’ Q) = min{ dmin(PnW’ QL)1 dmin(in’ QR)}

To solve for dy,in(Paw: @) We can invoke theorem 2.1. Finally, since P, and Qg are linearly sep-
arable, di(Pyw» Qr) can be solved with the techniques of [4] and [5]. Therefore case 1 can be
solved in O(m+n) time.
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3. Casel: P LiesEntirely Inside Q

Without loss of generality let usassumethat P liesinside Q, i.e.,, P [0 Q = Q. Wewill decom-
pose this problem into at most eight subproblems, four of which are linearly separable and can be
solved with the techniques of [4] and [5], and four which are taken care of by theorem 2.1 in this
paper. First we decompose P into four semi-circle polygons. Both Lee and Preparata[7] and Y ang
and Lee [8] give O(m) algorithms for obtaining such a decomposition. We select the latter [8] be-
cause it issimpler and does not require the computation of the diameter asin [7].

Problem decomposition

Step 1: Find Pymax, Pxmin: Pymax, and Pymin, the vertices of P with extreme x and y coordinates. (See
Fig. 2.) We then obtain four convex polygons with the semi-circle property:

P

ne = (pymax1 e pxmax)

IDse = (pxmax’ T pymin)
Psw = (pymin’ T pxmin)

PnW = (pxmin’ e pymax)

Note that if two vertices have the same coordinate, for example pyygy, then the left vertex is asso-
ciated with Py, and the right vertex with P, and so on.

Now, denoting the minimum vertex distance between P and Q by d,;4(P, Q), we have that




Pi+1

Fig.1.

P’ must intersecp;p; , ; at p,”. Thus it follows thaRB(py, p) must intersecp;p; , ; at
some point, say. Similarly, thel] bisector ofpj P, Must intersecp; p; , ; at some point say
y. Furthermore, sinczaanglepj Py Py < 180° the intersection dRB(p;, p) andRB(p, P), sayz,
must lie inRB(p;, p) N RB(P, ). If x lies abovey thenz 1 RB(p;, 1, p;) and we are done. If
X lies belowy, thenz [0 LH(p;+ 1, p;) and we must show thatzPg. Therefore assumelies
belowy. Construct triangleAxp, p, = A, andAypj p, =A,. From convexity it follows that
A, 0P andAy 0 P. Therefore, the portion &tB(py, p) to the left ofL lies inPg and also
the portion ofRB(p;, pi) to the left ofL. lies inPg. Thereforez LI Pg. Since the triplep;, py, p
was arbitrary it follows that all (Df‘) local Voronoi vertices oPg lie in Pg or RH(pj+ 1, Pj)-
Since a Voronoi vertex ofD(Pg), orglobal Voronoi vertex, belongs to a subset of lieal
vertices it follows that all @1) Voronoi vertices oW D(Py) lie in Pgor RH(p;+ 1, pj)- Q.E.D.

This theorem implies that the Voronoi diagraniPgin the region to the left df and exterior
to P, is completely determined by the partition imposed by thévisectors of the edges
Di+1Pi+2 Pi+2Pi+3 ---» P _1 P Therefore, in this region the Voronoi diagram can be constructed
in O(n) time. Furthermore, the “layered” structure of the Voronoi diagram impliesnthaery
points forming a convex cha@Q = (g4, d»...-, dy), Such that its vertices lie in such a region, can
be searched for point location in a total running time af) O[hus for this special situation the
nearest poinPg to each point ICQ can be solved in @J time. It follows that the minimum-ver-
tex-distance in betweddQ andPg can be computed in @)time.




is based on existing results on the relative neighborhood graph [6]. With trivial modifications the
algorithms in [4] and [5] also work if only the edgedPadindQ intersect, i.e., as long as the inte-
riors of the polygons do not intersect.

In this paper we show that when the interior® @ndQ intersect the minimum vertex dis-
tance can also be computed im®f) time. The problem is split into two cases: the case when
one polygon is completely contained in the other and the case where this is not true. The key result
for obtaining a solution to both cases consists of decomposing a convex polygon into parts associ-
ated with regions on the plane where the Voronoi diagram can be computed in linear time. This
result is presented in section 2. Section 3 describes the algorithm for the case when one polygon is
contained in the other and the case where this is not true is treated in section 4. Finally section 5
discusses some open problems.

2. Preliminary Results

Lee and Preparata [7] obtained a linear-time algorithm for the all-nearest-neighbor problem
for a convex polygoi® by decomposin@ into foursemi-circle polygons. Consider the following
conditions:

(i) The two farthest points &t are the extremes of an edge, i.e., diamejer@(p;, g;+,) for
somei.

(i) All the vertices ofP lie inside a circle with diameter equal to the diameté&t. & convex
polygon that satisfies both (i) and (ii) is@mi-circle polygon.

Semi-circle polygons have some very special properties. The property used in [7] is the fact
that for any vertexy its nearest neighbqy is adjacent t@;, i.e., it is eithep;, orp;_;. In this sec-
tion we prove another special propertysahi-circle polygons. They admit a partition of the plane
into special regions, needed for solving the minimum vertex-distance problem, where the Voronoi
diagram can be constructed in linear time. Furthermore, this Voronoi diagram can be searched for
point location of a linear number of query points in linear time when the query points are vertices
of a convex polygonal chain.

Let L(p;, p;) denote the directed straight line throyglandp; in that order. LeRH(p;, )
denote the closed half-plane lying to the right (;, p), i.e., it included (p;, p;). If it does not
include the line it will be referred to as open. Alsdwill refer to left half-plane. Le¥D(P) denote
the Voronoi diagram of the vertices Bf B(p;, py) the perpendicular () bisector of the line seg-
ment joiningp; andp;, and letRB(p;, p;) denote that part &@(p;, p;) lying to the right oL(p;, p)).

Theorem 2.1: Given a convex polygoRg of n sides with the semi-circle property with respect to
edgep; p; , ; then the Voronoi vertices MD(Py) all lie in Pg or in openRH(p;+1, ;).

Proof:  Without loss of generality, we assum; ., , is vertical. Lep;, py, p be any ordered trip-
let of vertices oPg. The local Voronoi vertex of this triplgf is determlned by the intersec-
tions of thel blsector ob Py andpkp| Extendpkp, to mtersect the semi-circleé atp,’ and
extendpI p, to intersect atf: atp,. (Refer to Fig. 1.) Sincangle p, p, p; = 90° it follows that
the UtoL(py, p) atp,’ intersect, p; , ; atp,”. Sincep, , 1 PP, = 90°, thelJto L(py, p) at



An Optimal Algorithm for Computing the Minimum Vertex
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ABSTRACT

Let P={pq, po,-.., P} @d Q ={qy, Qp,..., g} be two intersecting polygons whose
vertices are specified by their cartesian coordinates in order. An optimal O(m+n) al-
gorithmis presented for computing the minimum euclidean distance between avertex
p; in P and avertex g; in Q.

Key words: Algorithms, complexity, computational geometry, convex polygons, min-
imum distance, Voronoi diagrams.

1. Introduction

Let P={pq, P2,--s Pt @d Q ={qy, do,..., 0} be two convex polygons whose vertices are
specified by their cartesian coordinates in clockwise order. We assume the polygons are in stan-
dard form, i.e., no three vertices are collinear. Let d(x, y) denote the euclidean distance between
points x and y. Considerable attention has been given recently to the problem of computing extre-
mal distances between convex polygons dueto their application in pattern recognition and collision
avoidance problems[1], [2]. One such problem consists of finding the minimum distance between
the polygons, i.e., zero if the polygonsintersect and the minimum distance d(x, y) realized by apair
of pointsx O P,y 0 Q, if P and Q do not intersect. Edelsbrunner [1] describes an optimal O(log m
+ log n) algorithm for solving this problem. This improves an earlier algorithm for this problem
due to Schwartz [2] which runsin O((log m)(log n)) time.

A more difficult problem is to find the minimum vertex distance between P and Q, i.e., the
minimum distance d(x, y) where x and y are restricted to being vertices of P and Q, respectively.
The naive method of computing d(p;, o) for all i and j requires, of course, O(mn) time. By com-
puting supergraphs of the minimal spanning tree of the union of the vertices of P and Q Toussaint
and Bhattacharya[ 3] have shown that this problem can be solved in O((n+n) log (nm+n)) time. The
methods of [3] however do not exploit the fact that P and Q are convex.

Recently McKenna and Toussaint [4] and Chin and Wang [5] independently discovered op-
timal O(m+n) algorithms for solving this problem in the specia case where P and Q are linearly
separable, i.e., the polygons do not intersect. The agorithm in [4] differsfrom that in [5] in that it
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