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Proof: Assume the polygon P has two ears and that the dual tree of some triangulation of P is not
a chain. Then the tree must contain at least three leaves which is a contradiction.   Q.E.D.

Theorem 3 allows us to triangulate the interior of a two-ear polygon of n vertices in O(n)
time as follows. Consider any vertex xi of P. It is an easy matter to find another vertex xj such that

[xj,xi] is an internal diameter of P in O(n) time if indeed such a diagonal exists[Le]. Furthermore

if such a diagonal does not exist then the diagonal [xi-1,xi+1] is guaranteed to exist[Le]. In either

case this diagonal partitions the polygon P into two polygons P1 and P2 each of which can be tri-

angulated in O(n) time starting at either [xj,xi] or [xi-1,xi+1]. It suffices to realize that each diagonal

can be inserted with a constant number of local angle tests.

A similar procedure can be used to triangulate the exterior of a one-mouth polygon. First
we can use an O(n) time algorithm for finding the convex hull of P [To1]. This will identify the
two vertices xi and xj that form the “lid” of the pocket Kij of CH(P). One of the two ears of Kij must

occur at either xi or xj and can then be identified in a constant number of steps (i.e., independent of

n). Triangulation of Kij can then proceed as in the case of the two-ear polygon.

We have therefore established the following theorems.

Theorem 4: A one-mouth polygon can be externally triangulated in O(n) time.

Theorem 5: A two-ear polygon can be internally triangulated in O(n) time.

Theorem 6: An anthropomorphic polygon can be completely triangulated in O(n) time.

One additional computational problem that is of interest here concerns the recognition of
these types of polygons. For example, whether a simple polygon is star-shaped or not can be de-
termined in O(n) time [LP]. By testing every vertex of a simple polygon to determine whether it is
an ear or a mouth we can recognize anthropomorphic polygons in O(n2) time. However, using a
more clever procedure we can reduce this complexity to O(n) [ST].
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Fig. 2 (c) This polygon has precisely three principal vertices:
two ears and one mouth and yet none of them are exposed.

Fig. 2 (a) A polygon with only one
mouth and many ears.

Fig. 2 (b) A polygon with only two
ears and many mouths.
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lem. Triangulating P does not appear to help here and a straightforward approach to “gobbling-up”
mouths leads to an O(n3) time algorithm. On the other hand several O(n) time algorithms for com-
puting the convex hull of a simple polygon are known [MA], [GY], [To].

It is possible for a polygon to have many ears and only one mouth (Fig. 2 (a)) and also many
mouths and only one ear (Fig.2 (b)). Note that care is needed when speaking of mouths and ears
as well exposed vertices, i.e., vertices of P that are also vertices of CH(P). For example, Guggen-
heimer [Gu] states that a simple polygon has two principal vertices that are exposed. This is false
and a counter-example due to Meisters [Me2] is illustrated in Fig. 2 (c). This figure also illustrates
that polygons exist which have precisely one mouth and two ears. In fact, these notions suggest
some interesting families of simple polygons. Recall that no O(n) time algorithm exists for trian-
gulating an arbitrary simple polygon. However certain special classes of simple polygons such as
star-shaped ones do admit O(n) time triangulation [To2]. We now define another such class of
polygons.

Definition: A simple non-convex polygon P is called a one-mouth polygon provided it contains no
more than one mouth.

Definition: A simple polygon P is called a two-ear polygon provided it contains no more than two
ears.

Definition: A simple polygon P is called anthropomorphic provided it contains precisely two ears
and one mouth. (see Fig. 2 (c))

These three classes of polygons exhibit a good deal of structure as exemplified by the fol-
lowing theorem.

Theorem 3: The dual-tree of every triangulation of a two-ear polygon is a chain.

xj+1

xj
xi

xi+1

Kij

Fig. 1 Illustrating the proof of the One-Mouth Theorem.
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we retain a simple polygon P’. In actual fact of course we need only a “one ear” theorem to carry
out such a procedure. The method is evident: locate an ear in P and “cut it off,” then locate an ear
in the remaining polygon of one less vertex and cut it off, and continue this process until the re-
maining polygon is a triangle. It is obvious that such a procedure could also be used as an algorithm
for computing a triangulation of P.   However care must be taken in converting this idea into an
efficient algorithm. A straightforward approach of implementing this notion can result in a very
slow algorithm. To determine if a vertex is or is not an ear may take O(n) steps and we may have
to visit O(n) vertices to find and cut off an ear. Therefore using a “brute force” approach we may
have to perform O(n2) steps to cut off an ear and O(n3) steps to completely triangulate P in this
manner. On the other hand algorithms exist for triangulating simple polygons in time O(n log n)
[GJPT] and O(n log log n) [TV]. Once a triangulation is obtained the dual-tree can be determined
in O(n) time. Finally an O(n)-time tree-traversal can prune off one leaf from the dual-tree at each
step resulting in the cutting off of one ear from P at each step. It remains one of the most outstand-
ing problems in computational geometry to determine if an O(n) time algorithm exists for triangu-
lating arbitrary simple polygons.

One question that arises is whether the “inverse” of the previous procedure is possible, i.e.,
does there always exist a step-wise procedure for “inflating” a simple polygon P until it is as “fat-
as-possible” by deleting vertices from P one-at-a-time so that at each step we retain a simple poly-
gon? We answer this question in the affirmative by proving that every non-convex polygon con-
tains at least one mouth, but first we must define mouth and make more precise what we mean by
as “fat-as-possible.”

Definition: A principal vertex xi of a simple polygon P is called a mouth if the diagonal [xi-1,xi+1]

is an external diagonal, i.e., the interior of [xi-1,xi+1] lies in the exterior of P.

The convex hull of a simple polygon P will be denoted by CH(P). The boundary (bd) of
CH(P) is a convex polygon. We now have a precise definition of “as-fat-as-possible,” i.e.,   P is
inflated until it becomes the convex hull of P.

Theorem 2: (the One-Mouth Theorem) Except for convex polygons every simple polygon P has
at least one mouth.

Proof: Construct the convex hull CH(P). Since P is non-convex there must exist edges on
bd(CH(P)) that are not edges of P. Each such edge forms the “lid” of a “pocket” of CH(P). (refer
to Fig. 1) We shall prove that in fact every such pocket yields a mouth. Let Kij denote the pocket

of CH(P) determined by vertices xi and xj of P. Clearly Kij= [xi,xi+1,...,xj]∪[xj,xi] forms itself a sim-

ple polygon. By the Two-Ears Theorem Kij must have two ears and since they are non-overlapping

they cannot both occur at xi and xj. Therefore at least one ear must occur at xk for i < k < j. Obvi-

ously such an ear for Kij is a mouth for P.   Q. E. D.

While the above step-wise procedure for “inflating” a polygon P by “gobbling-up” mouths
provides an algorithm for computing the convex hull of P this is not the best way to tackle this prob-
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 We are concerned with a very special type of polygon in the Euclidean plane E2 referred to
as a simple (also Jordan) polygon. For any integer n ≥ 3, we define a polygon or n-gon in the Eu-
clidean plane E2 as the figure P = [x1,x2,...,xn] formed by n points x1,x2,...,xn in E2 and n line seg-

ments [xi,xi+1], i=1,2,...,n-1, and [xn,x1]. The points xi are called the vertices of the polygon and the

line segments are termed its edges.

Definition:   A polygon P is called a simple polygon provided that no point of the plane belongs
to more than two edges of P and the only points of the plane that belong to precisely two edges are
the vertices of P. A simple polygon has a well defined interior and exterior. We will follow the con-
vention of including the interior of a polygon when referring to P.

Definition: (Meisters [Me2]) A vertex xi of P is said to be a principal vertex provided that no vertex

of P lies in the interior of the triangle [xi-1,xi,xi+1] or in the interior of the diagonal [xi-1,xi+1].

Definition: (Meisters [Me1]) A principal vertex xi of a simple polygon P is called an ear if the di-

agonal [xi-1,xi+1] that bridges xi lies entirely in P.   We say that two ears xi and xj are non-overlap-

ping if int[xi-1,xi,xi+1] ∩ int[xj-1,xj,xj+1] = ∅.

The following Two-Ears Theorem was recently proved by Meisters [Me1].

Theorem 1: (the Two-Ears Theorem, Meisters [Me1]) Except for triangles every simple polygon
P has at least two non-overlapping ears.

Meisters’ proof by induction is both elegant and concise. However, given that a simple polygon
can always be triangulated allows a one-sentence proof [O’R]. Leaves in the dual-tree of the trian-
gulated polygon correspond to ears and every tree of two or more nodes must have at least two
leaves.

 This theorem is quite applicable in many situations. For example it establishes that there
exists a step-wise procedure for “shrinking” a polygon P down to a triangle by at each step deleting
a vertex, say xi, and inserting [xi-1,xi+1] in the place of [xi-1,xi,xi+1] while ensuring that at each step


