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for all the other proximity graphs discussed in this note.
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[pi, pj] lies in P. It is an open question whether this decomposition can be computed in o(n2) time

and neither is a super-linear lower bound known for this problem. However, under a slightly dif-
ferent visibility constraint Su and Chang [SC91a] are able to obtain an O(n log n) time algorithm
for computing the RNG of a set of line segments. Clearly a simple polygon is a special case of a
set of line segments and hence under their visibility constraint the RND of a simple polygon can
be computed in O(n log n) time. Pankaj Agarwal has shown that their methods will also yield an
O(n log n) algorithm for the RND as define by ElGindy and Toussaint[ET88].

1.2.2 Special classes of polygons

The fastest known algorithm [ET88] for computing the RND of a simple polygon is O(n2).
On the other hand, for convex polygons the RND can be computed in O(n) time [Su83], and so can
the Delaunay triangulation [AGSS]. However, it is shown in [ART87] that O(n log n) is a lower
bound for computing the Delaunay triangulation on the vertices of a star-shaped or monotone poly-
gon. It is unknown whether any other proximity graphs can be computed in linear time for the case
of convex polygons. Furthermore, for most proximity graphs it is unknown whether they can be

computed in o(n2) time for special classes of simple polygons such as star-shaped, monotone or
unimodal polygons. For unimodal polygons the RNG and MST can be computed in O(n) time
[Ol89]. It is unknown whether the Delaunay triangulation on the vertices of a unimodal polygon
can be computed in linear time.

2. Recognizing Proximity Graphs

One area as yet almost totally unexplored concerns the question of the recognition of prox-
imity graphs. The only known result concerns Delaunay triangulations. Given a triangulation T of
a set of n points, Ash & Bolker [AB85] have shown that whether T is a Delaunay triangulation can
be determined in O(n) time.

3. Graph Theoretic Properties of Proximity Graphs

Another area which has received little attention concerns the determination of graph theo-
retical properties of proximity graphs. The only proximity graphs which have been carefully ex-
amined are the Gabriel graph [MS80] and the RNG [Ur83].

4. Probabilistic Properties of Proximity Graphs

Yet another area which has received little attention concerns the determination of probabi-
listic and statistical properties of proximity graphs. The only proximity graphs which have been
carefully examined are the Delaunay triangulation, the Gabriel graph, and the RNG. Miles [Mi70]
has done considerable work on the probability distribution of random variables describing charac-
teristics of the Delaunay triangulation. See also Getis & Boots [GB78]. Devroye [De88] obtains a
variety of results concerning the expected number of edges in proximity graphs such as the Gabriel
graph, the RNG and several types of nearest neighbour graphs. No results of this type are known
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polygonal approximation of curves see [Fi92] and [Ve92].

1.1.2 The Relative Neighborhood Graph

In [JK89] it is shown that the RNG in 3-space can be computed in O(n2 log n) time and
O(µ3(S)) space whereµ3(S) denotes the size of RNG(S). It is an open question whether this upper

bound can be improved. It is also not known how largeµ3(S) can be over all instances of S. Denote

this value byµ3(n). It is shown in [JK89] thatµ3(n) = O(n(3/2)+c) wherec is a positive constant

and they conjecture thatµ3(n) = O(n).

1.1.3 β-Skeletons

In [KR85] it was shown that lune-basedβ-skeletons withβ > 1 could be computed in O(n2)
time. In [JKY89] it is shown that lune-basedβ-skeletons with 1≤ β ≤ 2 can be constructed in linear
time from the Delaunay triangulation in anyLp metric. The Delaunay triangulation in anyLp met-

ric can be computed in O(n log n) time [Le80].   It is an open question whether forβ > 2 these

skeletons can be computed in o(n2) time.

1.1.4 The Sphere of Influence Graph

Avis and Horton [AH85] showed that the number of edges in the sphere-of-influence graph
is bounded above by 29n. The best upper bound to date is 17.5. This follows from a lemma of Bate-
man in geometrical extrema suggested by a lemma of Besicovitch (Geometry, May 1951, pp. 667-
675) and an observation of Kachalski. Bateman’s lemma gives 18n and Kachalski’s trick reduces
it by.5. The same trick reduces Avis & Horton’s bound by.5. David Avis conjectures that the best
upper bound is 9n.

1.2 Polygon decomposition

1.2.1 Simple polygons

The problems of decomposing simple polygons into various types of more structured poly-
gons have a number of practical applications and have received considerable attention recently
from the theoretical perspective. See [To88a] for several papers discussing recent issues. In pattern
recognition it is desired to obtain decompositions into meaningful parts. The so-calledcomponent-
directed methods decompose the polygon into well established classes of simpler polygons such
as convex or star-shaped polygons. These decompositions are satisfactory from the morphological
point of view only rarely. Another approach which may be superior is to useprocedure-directed
methods based on proximity graphs. In [To80b] it was proposed to use therelative-neighbour de-

composition (RND) of a simple polygon P of n vertices and an O(n3) time algorithm for its com-

putation was given. ElGindy and Toussaint [ET88] reduced this complexity to O(n2). Two vertices
pi and pj of a simple polygon are relative neighbours if their lune contains no other vertices of P

that are visible from either pi or pj. Two vertices pi and pj are said to be visible if the line segment
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ABSTRACT

Recent developments in the field of computational morphology (spatial and cluster
analysis, computer vision, pattern recognition, computational perception, etc.) are
making ever increasing use of proximity graphs. Thus it becomes increasingly rel-
evant to understand the properties of such graphs as well to design efficient algo-
rithms for their computation. In this note we mention some open problems in this
area.

1. Computational Morphology

1.1 The Shape of a Set of Points

1.1.1 Introduction

One of the central problems in shape analysis is extracting the shape of a set of points. Let
S={x1, x2,..., xn} be a finite set of points in the plane. The relative neighborhood graph (RNG)

[To80a] and the β-skeletons [KR85] are two structures that have been well investigated in this con-
text. The RNG is obtained by joining two points xi and xj of S with an edge if Lune(xi, xj) does

not contain any other points of S in its interior. Lune(xi, xj) is defined as the intersection of the two

discs centered at xi and xj with radius equal to the distance between xi and xj. One of the best

known proximity graphs on a set of points is the Delaunay triangulation (DT) and it is well known
that the DT is a supergraph of the RNG [To80a]. The β-skeletons are a generalization of RNG’s
and Gabriel graphs and the lune-based neighborhoods in question are a function of a parameter β.
In [To88b] a new graph termed the sphere-of-influence graph is proposed as a primal sketch in-
tended to capture the low-level perceptual structure of visual scenes consisting of dot-patterns
(point-sets). The graph suffers from none of the drawbacks of previous methods and for a dot pat-
tern consisting of n dots can be computed efficiently in O(n log n) time. For a survey of the most
recent results in this area see the paper by Radke [Ra88]. For applications of proximity graphs to
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