Geometric and Computational Aspects of
Polymer Reconfiguration

Michael Soss* Godfried T. Toussaint*
School of Computer Science
McGill University

November 16, 2000

Abstract

We examine a few computational geometric problems concerning the
structures of polymers. We use a standard model of a polymer, a polygonal
chain (path of line segments) in three dimensions. The chain can be
reconfigured in any manner as long as the edge lengths and the angles
between consecutive edges remain fixed, and no two edges cross during
the motion. We discuss preliminary results on the following problems.

Given a chain, select some interior edge uv, defining two subchains
which are adjacent to wv. Keeping the two subchains individually rigid,
rotate one around wv while leaving the other fixed in space, all while
maintaining the vertex-angles at wv. We call this motion an edge spin at
wo. An O(n?) algorithm for this problem is given as well as an Q(n logn)
lower bound on the time complexity.

In determining whether a chain can be reconfigured from one confor-
mation to another, it is useful to consider reconfiguring through some
canonical conformation. In our three-dimensional case, the most obvious
choice is to flatten a chain into the plane. However, we demonstrate that
determining if a given chain can be reconfigured into the plane without
self-intersecting is NP-hard, even if the restriction that it must lie mono-
tonically is added. We then provide an O(n) algorithm to decide if a chain
has a non-crossing convex coil conformation (where all angles turn in the
same direction), although we cannot yet decide if a sequence of motions
to reconfigure a chain into a convex coil conformation exists.

1 Introduction

During the past several years, questions regarding reconfiguring chains, poly-
gons, and trees have received widespread interest in the computational geometry
community and literature [20]. Most of these questions deal with unfolding a

*Authors’ address: School of Computer Science, McGill University, Montreal, QC,
CANADA H3A 2A7. E-mail: soss@cs.mcgill.ca, godfried@cs.mcgill.ca

linkage, in other words, straightening chains, convexifying polygons, or flat-
tening trees, all while maintaining the lengths of all edges and not allowing
self-intersections during the motion. The idea is that if two conformations of
the same chain can each be reconfigured into the same canonical conformation
(a straight chain, convex polygon, or flattened tree), then because the motions
are reversible, it is possible to reconfigure one conformation into the other via
the canonical one.

The most famous problem in this field, which stumped several mathemati-
cians for almost ten years, was just recently closed: Can all planar chains (and
polygons) be straightened (or convexified) in the plane? This question was re-
cently answered in the affirmative [10] by Connelly, Demaine, and Rote. This
result was complemented by Streinu shortly thereafter with a proof that O(n?)
motions of constant complexity suffice and an algorithm to easily compute
them [25]. Other results include demonstrating that some three-dimensional
chains are unstraightenable [6, 7, 26], and that all chains can be straightened in
four dimensions [9].

The applications of these questions are numerous, including robot arm path
planning [16] and wire and sheet metal bending [2], but the application with
which we are concerned here is of mapping conformation spaces of molecules.
The chemistry, biology, and physics communities have long been studying poly-
mers, molecules of often several thousand atoms in length, in order to under-
stand how they fold and to predict their final conformation. The objectives
are rather diverse, including straightening polymers to make more resilient rub-
ber [18], efficient drug design [12], and understanding the structure of DNA [14].
Researchers have been using Monte Carlo techniques to approximate the min-
imum energy polymer foldings [24] with some degree of success, although this
problem has been recently proven to be NP-hard [27]. Due to these difficulties,
physicists have also taken to simplifying the problem by imposing restrictions,
most notably by restricting the protein to lie on a lattice as opposed to a con-
tinuous space [17], although finding the minimum energy conformation on the
lattice is also NP-hard [13].

In 1987, Richard Randell designed a mathematical framework for geomet-
rically and topologically mapping the conformation space of molecules [22].
His research provided topological explanations of chemical phenomena, such
as demonstrating that the conformation space of cyclohexane, the six-atom car-
bon ring CgHjz, has two distinct path-connected components [21]. (Randell
later discovered that the same calculations had been made from an algebraic
viewpoint a century earlier [23].) Cyclohexane takes the shape of an equilat-
eral hexagon with all bond angles of about 109.5°, as illustrated in Figure 1.
Randell proves several other interesting results, including that a carbon ring of
fewer than 11 atoms must be unknotted.

In this paper, we use a model similar to the one used by Randell and several
others [12, 27] to solve problems concerning polymers. We consider a polymer
to be a three dimensional chain with fixed edge lengths and fixed angles (vertex-
angles) between consecutive edges, modelling the fixed bond lengths and bond
angles between atoms. Any such chain can be reconfigured by a vertex-angle

=,

Figure 1: The two possible conformations of cyclohexane, the six-atom carbon
ring CgH12. Only the carbon atoms are drawn; the hydrogen atoms are omitted.
Left: The boat conformation, which has enough freedom to move to other similar
boat conformations. Right: The chair conformation, which is rigid.

preserving motion, meaning that the edges of the chain are free to move about so
long as the edge lengths and the vertex-angles between consecutive edges remain
fixed. Furthermore, the chain is not permitted to self-intersect throughout the
motion. An example of a vertex-angle preserving motion of a chain is illustrated
in Figure 2.

We begin in Section 2 with a discussion of arguably the simplest form of
vertex-angle preserving motion, an edge spin. We continue in Section 3 to
the question of reconfiguring one conformation to another via the canonical
conformation of a non-intersecting planar chain. Section 4 concludes and lists
directions for future work.

2 The Edge Spin problem

We start our discussion on reconfiguring polygonal chains with fixed vertex-
angles with the following simple motion. Given a chain, select some interior
edge wv. This defines two subchains A and B such that v € A and v € B.
We can keep the two subchains individually rigid and, leaving A fixed in space,
rotate B around wv (while maintaining the fixed vertex-angle at v) by some
angle ¢. We call this motion an edge spin of angle ¢ at wv. An illustration is in
Figure 2.
The remainder of this section deals with the following problem.

Problem 1 (Edge Spin) Given a three-dimensional polygonal chain, a se-
lected edge uv, and an angle ¢, can we perform an edge spin of angle ¢ at
uv without causing the chain to self-intersect?

We now sketch an algorithm to answer the above question, followed by a
proof of a lower bound on the complexity of the problem.

2.1 An algorithm to solve the Edge Spin problem
We give a quadratic time algorithm to solve the Edge Spin problem.

Figure 2: An edge spin of angle ¢ at wv. Note that due to the fixed vertex-angle
at v, B spins about an axis of rotation colinear with the edge uv.

Theorem 1 The Edge Spin problem is solvable in O(n?) time and O(n) space,
where n is the number of edges in the chain.

Proof. The main idea is to pretend to spin one of the subchains around wo
completely (by angle 27), and examine all self-intersections which would occur
along the way. We compute the angle of rotation at which intersection occurs
during the motion, and if none occur before angle ¢ is reached, the edge spin
can be performed.

To compute the intersections during the spin of angle 27, consider any plane
P incident to wov. Without considering intersections between the two subchains,
pretend to spin subchain A around ww, and trace where the subchain would
sweep through P during the motion. Do the same for subchain B. Since a line
segment rotating about a line sweeps out a portion of a hyperboloid, we have
two arrangements of O(n) hyperbolic arcs each in the plane.

Note that spinning subchain A equivalent to spinning subchain B, modulo
a rotation of the entire chain, because both rotations are about the same axis,
edge wo. Thus if executing an edge spin causes an intersection, there will be
an intersection of the two arrangements. We can compute if any arcs corre-
sponding to A intersect an arc corresponding with B with brute force in O(n?)
time. Faster yet, we can also use the intersection algorithm of Bentley and
Ottmann [5]. This yields a time complexity of O(nlogn + k), where k is the
sum of the self-intersections in each arrangement and the intersections between
arrangements. (Although k could be as large as ©(n?) in the worst case, it
would prove faster in practice than brute force.) Regardless of the method used
to detect intersections, as each intersecting pair of arcs is detected, we determine
the angle of rotation required before such an intersection would occur during
the edge spin. Thus the entire algorithm finishes in O(n?) time. Furthermore,
once we detect a pair of intersecting arcs and determine the angle of rotation
required, we will never again need to examine that intersection. Therefore we
do not need to store intersections already detected, so we require only linear
space by using brute force or Bentley and Ottmann.]

Rather than asking the Edge Spin problem for a particular ¢, one may wish
to know if a complete edge spin (of angle 27) can be performed. We show that
this problem may be easier by demonstrating a faster algorithm.

Theorem 2 For ¢ = 2w, the Edge Spin Problem is solvable in deterministic
time O(n2*(™ log® n) and space O(n2*™) and in expected time O(n2%™ logn)
and space O(n2*™), where a(n) is the slow-growing, nearly constant, inverse
of the familiar Ackermann function.

Proof. We repeat the above technique as in the proof of Theorem 1. However,
for this choice of ¢, we do not have to check to see which intersection occurs first
in our arrangements; if any intersection at all exists between the arrangements,
the edge spin cannot be performed. Given two arrangements of hyperbolic arcs
which pairwise intersect at most twice, we can detect an intersection between
the arrangements in the stated deterministic time and space using algorithms
of Agarwal and Sharir [1] and of Guibas, Sharir, and Sifrony [15]. By replac-
ing the latter with the algorithm of Chazelle, Edelsbrunner, Guibas, Sharir,
Snoeyink [8], we can achieve the stated expected time and space. []

2.2 A lower bound for the Edge Spin problem

In this subsection, we prove the following result.

Theorem 3 The time complexity of the Edge Spin problem on a chain of n
edges is Q(nlogn) under the algebraic decision tree model of computation.

We prove Theorem 3 with a reduction from Element Uniqueness, which
states as follows.

Problem 2 (Element Uniqueness) Given a set S = {s1,...,8,}, is every
element unique? In other words, does i # j imply that s; # s;¢

The time complexity of the Element Uniqueness problem is known to have
an Q(nlogn) lower bound under the algebraic decision tree model, as shown by
Ben-Or [4]. Given a set S, we create a polygonal chain and select an edge in
linear time such that answering the Edge Spin problem also answers Element
Uniqueness on S.

2.2.1 Construction of a tree

Let N be the number of elements in the set S. We consider all elements to be
strictly positive. If this is not the case, then we can add some suitable integer
to each element in the set (which can be done in linear time).

As the chain we will build is difficult to visualize, it will be far easier first
to explain how a tree can be constructed in the zz-plane to answer our query.
We will not address the issue of constructing the tree; rather, we will later show
how to construct a chain in linear time which behaves in an identical manner.

\ \
u u

Figure 3: Left: the tree constructed for a set with no repeated elements,
{2,1,5,8,7,6}. The edge spin occurs at wv. Right: the tree in mid-spin, after a
rotation of .

v v
u u

Figure 4: Left: the tree constructed for a set with a repeated element,
{2,1,5,8,7,5}. The edge spin occurs at wo, and the endpoints of the over-
lapped edges are encircled. Right: the tree in mid-spin, after a rotation of .
The bold segment is where the collision occurs.

For the purposes of terminology, we discuss the tree in three parts, the base
and the left and right gadgets. The main idea is that the base and the left
gadget will remain stationary while the right gadget spins about an edge on the
base. If and only if element uniqueness holds, the two gadgets will not collide.

We begin our construction of the tree by drawing the base, a three-edge
chain from (0,0,0) to (0,0,—1) to u = (N + 2,0,-1) to v = (N + £,0,0).

For the left gadget, we first draw a vertical edge from (0, 0,0) to (0,0, max{S}).
We call this edge the stem of the gadget. For each s;, we connect a new edge
{(0,0,s;), (i,0, 5;)) to the stem. In other words, from the stem we build an edge
extending to the right at height s; of length 4. If s; is not unique, then we’ll
have two overlapping edges, but for simplicity’s sake, we allow the intersection.
(We will worry about this later when we create the chain.)

We create the right gadget similarly, except each edge has length N —¢ + 1.
We first draw the stem from (N + %,0,0) to (N + %,O,max{S}). For each s;,
we connect a new edge ((N + 2,0,s;), (2N + 2 —4,0,5;)) to the stem. In other
words, from the stem we build an edge extending to the right at height s; of
length N —i+1. (Again, ignore the problems of intersecting if s; is not unique.)

Examples are shown in Figures 3 and 4.

We now perform a complete edge spin (of angle 27) at wv. Since the tree is
orthogonal, every edge will stay at the same height during the motion. Therefore
the only chance for collision is that two edges of the same height, and thus
corresponding to elements of the same value, collide. Note that the two stems

are distance N + % apart; therefore if and only if the total lengths of two
edges of the same height on opposite gadgets are at least N + % will there
be a collision. Since the lengths of the two edges corresponding to the same
vertex sum to N + 1, we can only have a collision if two edges corresponding to
different elements collide. Note that this will necessarily happen if there exists
two elements s; and s; (i < j) with the same value. Then the left gadget edge
corresponding to s; has length j, and the right gadget edge corresponding to s;
has length N — 4. Since ¢ < j, the two edges have total length at least N + 2.
Since s; = s;, the edges are at the same height, and we have a collision.
Next we create a chain with the same properties.

2.2.2 Construction of the chain

We now create a three-dimensional chain which does not self-intersect and be-
haves exactly like the tree. In fact, from the viewpoint of y = 400, the tree and
the chain look identical.

The base is the same, a three-edge subchain from (0,0,0) to (0,0,—1) to
u=(N+2,0,-1) tov = (N+3,0,0). For the left gadget, create the first
edge similarly to the tree; draw an edge up from (0,0, 0) to (0,0, s1), and then
horizontally to (1,0,s1). To avoid intersections in the chain, we exploit the
third dimension, y. We draw an edge back to a point just in front of the stem,
at (0,—%,s1). Now we are free to draw a vertical edge from (0, —1%,51) to
(0, — ;% s2), which places us at height s, in preparation for the next two edges,
to (2,0, s2) and back to (0, — 7%, s2). We continue this pattern drawing edges to
(0, —T—Nl,si), (1,0,), (0, —ﬁ,si), and so on until the gadget is complete. We
construct the right chain in the exact same fashion, except that we reverse the
labelling of the elements from s1,...,8, t0 $p,...,S51.

An illustration of the left gadget and the base is in Figure 5; a bird’s eye
view of the whole chain is in Figure 6.

We perform a complete edge spin (of angle 27) at wv. Note that since all
edges are within radius N of their respective gadget stem, and the stems are
N + % apart, no part of either gadget will enter a cylinder of radius % around
the stem of the opposite gadget. Since all the vertical edges are contained in a
cylinder of radius i around the stems, only the horizontal edges corresponding
to elements in the set S can collide. Thus the behavior of the chain mimics that
of the tree exactly. The entire chain is illustrated in Figure 7.

3 Reconfiguring chains into the plane

We may also wish to consider not just a single edge spin, but rather whether
or not we can reconfigure a chain from a given conformation to a certain goal
conformation. An intuitive approach is to ask if both can be reconfigured into
some canonical conformation. If so, then because the motions are reversible,
one can reconfigure the chain from the given conformation to the canonical con-
formation, and then reconfigure from the canonical conformation to the goal

Figure 5: Oblique view of the base and left gadget, for the set (2,1,5,8,7,5).
Note there are two pairs of edges at height z = 5, corresponding to the repeated
element. (The edge spin occurs at uv.)

Figure 6: View of the chain from above (z = +o0). Not to scale; y-direction is
magnified for clarity. (The edge spin occurs at @w.)

Figure 7: Oblique view of the chain for the set (2,1,5,8,7,5). If an edge spin
is performed at ww, the edges indicated at the arrows, which correspond to the
repeated element 5, will collide.

conformation. In the computational geometry literature where the angles be-
tween edges are free to change, the canonical conformation for chains is a straight
segment. Obviously this is unachievable for chains with fixed vertex-angles be-
tween edges, so a natural question to ask is whether or not we can reconfigure
a three-dimensional chain such that it lies flat in the plane without crossing
itself. (We do not claim that one planar conformation can be reconfigured to
any other, but rather that simply reconfiguring a chain into the plane is a good
start.) In this section, we discuss this problem as well as two variants.

3.1 Non-crossing planar conformations

We focus on the following.

Problem 3 (Planar Flattening) Given a polygonal chain in three dimen-
sions, does there exist a sequence of vertex-angle preserving motions which place
the chain into a non-crossing planar conformation?

As mentioned above, an efficient algorithm for this problem could prove to
be very useful. However, we demonstrate Planar Flattening to be NP-hard via
a reduction from Partition, which reads as follows.

Problem 4 (Partition) Given o set of integers S, can it be partitioned into
two disjoint sets S, and Sy such that X(s:s € S,) =%X(s:5€ 5p)?

Theorem 4 Planar Flattening is NP-hard.

Proof. Given a set S, we show that in polynomial time we can create a chain
which can be reconfigured into the plane if and only if the set has a partition.

We begin by creating, in the plane, either of the chains in Figure 8, where
o is the sum of the absolute values of all elements of S. An enumeration will
show that these are the only two planar conformations possible for this chain.
We refer to this chain as the cage and the shaded triangle as the door. We then
add to vertex a (as labelled in Figure 8 a long subchain ending in an edge which
we call the key. The general idea is to fashion the chain such that any flattened
conformation must have the key placed inside the door, and then show that the
key fits if and only if a partition exists for the set S.

We now create the remainder of the chain from vertex a. We build an
orthogonal subchain, such that every vertex-angle between edges is 7/2. We
start at vertex a, and for every element s; € S, place an edge moving upward
(normal to the plane of the cage) of length 1/n followed by an edge e; of length
s; in a plane parallel to the cage, and repeat. We then place one more edge, an
upward edge of length 5, which we call the key. The subchain is illustrated in
Figure 9; the entire chain is illustrated in Figure 10.

If we wish to collapse our chain to the plane, we can do the following. Con-
sider the subchain as a directed chain. Because of its orthogonality, when the
chain is planar each edge e; will point either directly left or right, and all others
up or down. Thus the z-coordinate of the final edge, the key, is the z-coordinate

Figure 8: The two possible planar conformations of the cage of the chain con-
structed in the NP-hardness reduction. The door is the shaded triangle.

Figure 9: The subchain starting at vertex a.

\ \—H—A

Figure 10: The entire chain constructed in the proof of Theorem 4.

10

Figure 11: A chain whose key fits in the door.

A L

Figure 12: Left: A monotone chain. Right: A non-monotone chain.

of a plus the sum X(s; : e; points right) — X(s; : e; points left). Since the door
has width less than 1, and the elements s; are integers, the key fits in the door
if and only if 3(s; : e; points right) = X(s; : e; points left), solving the Partition
problem. This situation can be examined in Figure 11.

If we let all the small edges of length 1/n lie in a northerly (increasing in
y-coordinate) direction, as in Figure 11, then the subchain cannot self-intersect.
The only possible self-crossing in the entire chain occurs at the key, meaning
that there exists a planar conformation if and only if a partition exists. This
completes the reduction. [

(Due to its relevance to the reconfiguration of linkages, it is worth pointing
out that this proof is similar to the NP-hardness proof of Ruler Folding [16].)

3.1.1 Non-crossing monotone conformations

If the Planar Flattening problem is NP-hard, it might be easier to decide more
restrictive versions of the problem. We may also wish to consider whether or
not a chain has a monotone conformation in the plane. A planar polygonal
chain is monotone if every vertical line intersects the chain in at most one point
or one segment. In other words, as one traverses the chain edge by edge, the
chain always progresses to the right. Examples of a monotone chain and a
non-monotone chain are in Figure 12.

11

Figure 13: A chain which has a monotone conformation. Here az = a1 + a2+ aa,
solving the Partition problem.

Problem 5 (Planar Monotone Reconfiguration) Given a polygonal chain
in three dimensions, does there exist a sequence of vertex-angle preserving mo-
tions which place the chain into a non-crossing planar monotone conformation?

Despite its apparent simplicity, this problem is also NP-hard, which we
demonstrate in a similar fashion to the reduction above.

Theorem 5 Planar Monotone Flattening is NP-hard.

Proof. Suppose we have a Partition problem on some set S. We create a
chain similar to the one in Figure 13, such that the angles a; are proportional
to the elements s;, such that a; = s;/0 where ¢ is the sum of all elements.
Note that the chain can only be placed in a monotone conformation if the edges
e and f are extremely close to parallel, which we can specify to be less than
1/o. If e and f are almost parallel in this fashion, the sum of the vertex-angles
turning to the left minus the vertex-angles turning to the right is less than 1/o,
which solves the Partition problem. Furthermore, if e and f are near parallel,
then the chain is guaranteed to be monotone. Since the sum of the a; terms is
at most 1 radian, the chain cannot progress to the left (and therefore violate
monotonicity) except at the edges adjacent to e and f.]

As an aside, it is worth noting that in the most widely used models of
computation, such as the Turing Machine and the Real RAM model, trigono-
metric functions are not computable. Therefore building a chain with specific
angles is not possible in our model of computation since computing the co-
ordinates of the vertices would involve trigonometry. We can easily circum-
vent this shortcoming by never referring to the actual angles, but by approx-
imating the sine and cosine of the angle 1/0 and using identities (such as
cos(A + B) = cos Acos B — sin Asin B) to derive a consistent approximation
for the entire chain.

3.1.2 Reconfiguring into a convex coil

We say that a convez coil is a non-crossing planar chain composed of only right
or left turns. We would like to answer the following problem.

Problem 6 (Convex Coil Reconfiguration) Given a polygonal chain in three
dimensions, does there exist a sequence of vertex-angle preserving motions which
place the chain into a convex coil conformation?

12

Figure 14: A chain which is spiralling outward.

Figure 15: A chain which is spiralling inward.

Unfortunately, the above problem is not yet solved, but the question of
whether such a conformation exists for a given chain can be answered fairly
easily. Because all vertex-angles are fixed and turn either all right or all left, we
have no freedom in choosing where to place the edges. All we can do is draw
the chain in the plane with all right or all left turns and check for intersections.

We can use the algorithm of Balaban [3], which can report whether of not a
collection of n line segments contains an intersection in O(n logn) time and O(n)
space. This is not necessary, however, as the structure of a convex coil gives us
a great deal of extra information. We now show how to determine whether or
not a chain with fixed vertex-angles has a planar convex coil conformation in
O(n) time.

We draw the chain in the plane starting at one endpoint and drawing one
edge successively after the other, always checking if the last edge drawn inter-
sects any of the edges which precede it (which have already been drawn). We
identify two distinct stages. Initially, each new edge will lie outside the convex
hull of the drawn portion of the chain. In this case, there is no possibility for col-
lision with the drawn portion of the chain. We say that the chain is spiralling
outward in this case, as in Figure 14. When a new edge is drawn inside the
convex hull of the chain, collisions might occur. Furthermore, from this point
onward, all edges will lie inside the convex hull, since a left turn is needed to
escape. Here the chain is spiralling inward, as in Figure 15.

Our algorithm works as follows. As long as the chain is spiralling outward,
we continue, because no self-intersections are possible in this stage. Our only
interest is detecting when the chain begins to spiral inward. This is easily ac-
complished by running Melkman’s O(n) incremental convex hull algorithm [19],

13

Figure 16: Determining intersections when the chain is spiralling inward. Visi-
bility polygon is shaded.

insuring that each drawn edge expands the convex hull.

When we detect that the chain is spiralling inward, we begin checking for
intersections. We start by computing the polygon consisting of all points visible
from the endpoint e of the last edge in the convex direction. We call this polygon
the wisibility polygon, as illustrated in Figure 16. This polygon is computable
in O(n) time by an algorithm of Avis and El-Gindy [11], but is more easily
computed with the help of the following observation.

Because the chain consists of all right turns, the visibility polygon consists
of a chain of reflex vertices (of edges 1 and 2 in Figure 16) in the middle of
the chain, followed by a chain of convex vertices (of edges 3 through 7) which
includes e. Therefore, once we find one reflex vertex visible from e (if one
exists), we know that the reflex chain of the visibility polygon must lie around
this vertex and that the convex chain of the visibility polygon is adjacent to e.
We just advance along these chains until we can no longer see e to obtain the
polygon.

The visibility polygon contains all the edges that any new edges could pos-
sibly intersect, since getting to any edge in the chain but not in the polygon
would require a left turn. The remainder of the algorithm is quite simple. We
keep the edges of the polygon in a queue, such as in Figure 16. For each new
edge added, our visibility polygon changes. The new edge is added to the end
of the queue (edge 8 in Figure 17), and we advance the top of the queue to
find the new first edge of the polygon. If the first edge of the visibility polygon
has been intersected, we stop and report failure. If the first edge (edge 1) is
neither intersected nor visible in a convex direction, we pop it from the queue
and examine the next (edge 2). We repeat this procedure until we find an edge
which is visible or intersected. In Figure 17, the new polygon consists of edges
2 through 8.

Figure 18 illustrates the same example a few steps later. Eventually, we will
either find an intersection or draw the entire chain, answering the question.

14

Figure 18: The chain with two new edges drawn since Figure 17.

4 Conclusion

We described an O(n?)-time algorithm to solve the Edge Spin problem and
a lower bound of Q(nlogn) on the time complexity of the problem. We also
provide near-optimal algorithms for the problem when the angle of the edge
spin is 2. Clearly our discussion suggests the following open problem.

Open Problem 1 (Edge Spin) Tighten the complexity bounds on the Edge
Spin problem.

There are several other relevant questions which we have not yet mentioned.
We list a few below.

Open Problem 2 (Preprocessing) Computing the feasibility of edge spins
has a lower bound on the time complexity of Q(nlogn). But can a chain be
preprocessed so that repeated queries of edge spin feasibility can be answered
quickly?

Open Problem 3 (Reconfiguration) Flattening a chain into the plane is
NP-hard. Is it easier to place a chain into other canonical structures, such
as on the convex hull of a polyhedron?

Several beautiful geometric problems in this area arise when more than one
chain is considered. We give one such example.

Open Problem 4 (Bonding) Given one flexible molecule A and one rigid
molecule B with one or more bonding sites, can A be reconfigured to bond with
B? Can it be done while respecting certain constraints?

15

Acknowledgements

The authors would like to thank Jeff Erickson for bringing to their attention
the results of [1] and [8], and Ferran Hurtado for helpful discussions and for
pointing out an error in an earlier manuscript.

References

[1]

[2]

[9]

[10]

[11]

Pankaj K. Agarwal and Micha Sharir. Red-blue intersection detection algo-
rithms, with applications to motion planning and collision detection. STAM
J. Comput., 19(2):297-321, 1990.

Esther M. Arkin, Sdndor Fekete, Joseph S. B. Mitchell, and Steve S. Skiena.
On the manufacturability of paperclips and sheet metal structures. Techni-
cal report, Department of Applied Mathematics and Statistics, State Uni-
versity of New York at Stony Brook, 1999.

Ivan J. Balaban. An optimal algorithm for finding segment intersections.
In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 211-219, 1995.

M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th
Annu. ACM Sympos. Theory Comput., pages 80-86, 1983.

J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting
geometric intersections. IEEE Trans. Comput., C-28(9):643-647, Septem-
ber 1979.

T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke,
M. Overmars, S. Robbins, I. Streinu, G. T. Toussaint, and S. Whitesides.
Locked and unlocked polygonal chains in 3D. In Proc. 10th ACM-SIAM
Symposium on Discrete Algorithms, pages 866-867, 1999.

Jason Cantarella and Heather Johnston. Nontrivial embeddings of polyg-
onal intervals and unknots in 3-space. Journal of Knot Theory and its
Ramifications, 7(8):1027-1039, 1998.

Bernard Chazelle, H. Edelsbrunner, Leonidas J. Guibas, Micha Sharir, and
J. Snoeyink. Computing a face in an arrangement of line segments and
related problems. STAM J. Comput., 22:1286-1302, 1993.

Roxana Cocan and Joseph O’Rourke. Polygonal chains cannot lock in 4D.
In Proc. 11th Canadian Conference on Computational Geometry, 1999.

Robert Connelly, Erik D. Demaine, and Giinter Rote. Every polygon can
be untangled. In Proceedings of the Sixteenth European Workshop on Com-
putational Geometry, Eliat, Israel, March 2000.

H. ElGindy and D. Avis. A linear algorithm for computing the visibility
polygon from a point. J. Algorithms, 2:186-197, 1981.

16

[12] Paul W. Finn, Dan Halperin, Lydia E. Kavraki, Jean-Claude Latombe,
Rajeev Motwani, Christian Shelton, and Suresh Venkatasubramanian. Ge-
ometric manipulation of flexible ligands. In Applied Computational Geom-
etry, pages 67-78. Springer-Verlag, 1996.

[13] Aviezri S. Fraenkel. Complexity of protein folding. Bulletin of Mathematical
Biology, 55(6):1199-1210, 1993.

[14] Maxim D. Frank-Kamenetskii. Unravelling DNA. Addison-Wesley, 1997.

[15] Leonidas J. Guibas, Micha Sharir, and S. Sifrony. On the general motion
planning problem with two degrees of freedom. Discrete Comput. Geom.,
4:491-521, 1989.

[16] J. E. Hopcroft, D. A. Joseph, and S. H. Whitesides. On the movement of
robot arms in 2-dimensional bounded regions. SIAM J. Comput., 14:315—
333, 1985.

[17] Neal Madras and Gordon Slade. The Self-Avoiding Walk. Birkhauser,
Boston, 1993.

[18] Frank M. McMillan. The Chain Straighteners. The MacMillan Press, 1979.

[19] A. Melkman. On-line construction of the convex hull of a simple polyline.
Inform. Process. Lett., 25:11-12, 1987.

[20] Joseph O’Rourke. Folding and unfolding in computational geometry. In
Proc. Japan Conf. Discrete Comput. Geom. 98, pages 142-147, December
1998. Revised version submitted to LLNCS.

[21] Richard Randell. Conformation spaces of molecular rings. In Studies in
Physical and Theoretical Chemistry, pages 141-156. Elsevier Science Pub-
lishers, Amsterdam, 1988.

[22] Richard Randell. A molecular conformation space. In Studies in Physi-
cal and Theoretical Chemistry, pages 125-140. Elsevier Science Publishers,
Amsterdam, 1988.

[23] H. Sachse. Uber die Konfigurationen der Polymethylenringe. Zeitschrift
fiir physikalische Chemie, 10:202—241, 1892.

[24] S. D. Stellman and P. J. Gans. Efficient computer simulation of polymer
conformation. I. Geometric properties of the hard-sphere model. Macro-
molecules, 5:516-526, 1972.

[25] Tleana Streinu. A combinatorial approach to planar non-colliding robot arm
motion planning. In Proceedings of the Fourty-First Annual Symposium on
Foundations of Computer Science, Redondo Beach, California, November
2000.

17

[26] G. T. Toussaint. A new class of stuck unknots in Polg. Technical Report
S0OCS-99.1, School of Computer Science, McGill University, April 1999.
Also to appear in Contributions to Algebra and Geometry.

[27] Ron Unger and John Moult. Finding the lowest free energy conformation
of a protein is an NP-hard problem: proof and implications. Bulletin of
Mathematical Biology, 55(6):1183-1198, 1993.

18

