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Abstract

This is a survey of results on neighborhood graphs. The paper discusses properties, bounds
on the size, algorithms and variants of the neighborhood graphs. Numerous applications
including computational morphology, spatial analysis, pattern classification, and data bases
for computer vision are described. A rich bibliography of the subject concludes the paper.
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1 Introduction

A decade has passed since the paper “The relative neighborhood graph of a finite planar set” [Tou80b]
appeared in print. This anniversary gives a good opportunity to review the results obtained so far
and the current state of research on neighborhood graphs.

In fact, during this time the original notion of neighborhood has been generalized in several
directions and all of these graphs are now jointly referred to as prozimity graphs [Tou91]. So much
interest has been spawned in this area that in December 1989 an entire conference on proximity
graphs took place in Las Cruces, New Mexico [DH91].

The relative neighborhood graph of a finite set of points V', RNG(V), is a prominent rep-
resentative of the family of graphs which are defined using some concept of neighborliness. For
points in a real space R? the relative neighborhood graph of V is a graph with vertex set V
and set of edges RNG(V) which are exactly those pairs (p,q) of points for which §(p,q) <
maX,e\{p,g} 10 (P, v),0(q,v)}, where ¢ denotes the distance between p and ¢. Figure 1 illustrates a
set of points and their relative neighborhood graph.
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Figure 1: a point set and its RNG

The main objective of this paper is to summarize efforts of the last ten years of research on
concepts which emerged while studying relative neighborhood graphs.

. From a mathematical and algorithmic point of view neighborhood graphs fall under the scope
of computational geometry. More particularly, since they are concerned with extracting shape
and structure of point sets, from an application perspective, they form an indispensable tool of
computational morphology. Neighborhood graphs serve as tools in disciplines where shape and
structure are vital. These include visual perception, computer vision and pattern recognition,
geography and cartography, and biology, to list a few; for further examples refer to the section on
applications and the bibliography which includes numerous references.



There is, however, much beyond purely practical applications which makes neighborhood graphs
attractive objects of study. We will demonstrate both practical and theoretical aspects in further
sections where we discuss algorithms, properties and applications.

2 Definitions

We will start with a definition of neighborhood graph in a quite general form. This will later enable
us to introduce specialized versions more uniformly. Although our later discussion mainly pertains
to R? and R? the definition is valid in any dimension.

Let V be a set of points in R?. Each (unordered) pair of points (p,q) € V x V is associated
with a neighborhood U,, C R®. Let P be a property defined on U = {U,,: (p,q) €V xV}. A
neighborhood graph Gy, »(V, E) defined by the property P is a graphs with the set of vertices V and
the set of edges E such that (p, ¢) € E if and only if U, , has property P. If (p, ¢) is an edge, denoted
later simply by pg, then we say that ¢ is a neighbor of p (and vice versa). For some neighborhood
graphs it is more natural to associate neighborhoods with points rather than with pairs of points.

Technically, it is convenient to differentiate between the graph and its geometric realization
which is called a neighborhood skeleton. The neighborhood skeleton of V' is obtained by connecting,
with straight line segments, the pairs of points which form edges in the corresponding neighborhood
graph. We will use both terms alternatively without, we hope, any confusion. It is worth noting
that the term neighborhood graph is also used, with a different and unrelated meaning, in graph
theory; see [BBD87].

The neighborhood of an edge is usually defined using the concept of distance. In this paper,
we will use the metrics L,,1 < p < oo, L1, and L to measure the distance §(x,y) between
points £ = (z1,...,24) and y = (y1,...,yq) in R% The distance in the metric L, is defined as

Op(z,y) = (Ele |z; — yi\p)l/p. In L; and L, the distance is defined by &;(z,y) = =%, |z: — vil,
and oo (%, y) = maxi<i<a |T; — ¥i| respectively. Some concepts and results presented in the paper
hold for more general metrics. The distance d(p, ¢) will be also called the length of pg. Furthermore,
B(z,r) denotes an open sphere centered at x with radius r, i.e., B(z,r) = {y : d(z,y) < 7r}. A
closed sphere is defined as B(z,7) = {y : 6(z,y) < r}. In R? both a sphere and its boundary will
be called, without any confusion, a circle.

Below we will define, within this framework, relative neighborhood graphs, Gabriel graphs, and
(B-skeletons. Many interesting variants will be given in Section 6.

We begin with an alternative definition of the RNG.

Relative neighborhood graphs: Let A,, = B(p,d(p,q)) N B(g,0(p,q)); Ap, is called a lune.
The relative neighborhood graph of V', the RNG(V), is a neighborhood graph with the set of edges
defined as follows:

(p,q) € E if and only if A, , NV = 0.

Note that the above definition is equivalent to one given in the introduction.
As a historical digression let us mention that lunes, as intersections of circles, have been the
object of intense study since the times of ancient Greeks. Unlike a circle (which cannot be squared
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with a straight edge and compass) Hippocrates of Chios (circa 440 B.C.) showed that certain types
of lunes could be squared [Dun90]. Furthermore, the type of lune used in the RNG, traditionally
referred to as the Vesica Piscis, was used with symbolism as a basic design element in the floor
plans of gothic cathedrals [Law82].

It is immediate that an edge (p,q) is in the RNG(V) if there is no triangle Apgv, v € V'\
{p, ¢}, with pq the strictly longest edge. In Euclidean spaces, relative neighborhood graphs can be
equivalently defined by means of angles; we will return to this issue in Section 5.

Note that if we change slightly the definition of the neighborhood by using the intersection of
closed spheres (rather than their interiors) we obtain a different class of graphs. In fact such a
class was defined by Lankford [Lan69] in 1969 and historically relative neighborhood graphs could
be viewed as a modification of this class, see [Tou80b]. As we will point out in later sections this
modification leads to different geometric properties.

Gabriel graphs: The neighborhood, called a diameter sphere, is defined as a sphere; I',, =
B(&te 5(7;"1)). The Gabriel graph of V, GG(V), is a neighborhood graph with the set of edges:
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(p,q) € Eifand only if ', ,NV = 0.

In the Euclidean space, pg is an edge in GG (V) if there is no triangle Apqu, v € V' \ {p, ¢}, with
/pvq > 3. Yet another equivalent definition is that

P € GG(V) if 52(p,0) < min {\/62(p,5) + 0:7(p,) 5 €V},

Gabriel graphs were introduced by Gabriel and Sokal [GS69] in a context of geographic variation
analysis.

B - skeleton: Kirkpatrick and Radke [KR85] defined a parameterized family of neighborhood
graphs called (3-skeletons. The neighborhood U, 4(/3) is defined, for any fixed § (1 < < o0) as the
intersection of two spheres:

Y g B Y g p
Upa(B8) = B((1 = 5)p + 54, 50(p, 4)) N B((1 = 5)a + 5p, 56(p, ))-
The (lune-based) (-skeleton of V', Gz(V), is a neighborhood graph with the set of edges defined as
follows:

(p,q) € Eifand only if U, ,(B) NV = 0.

A useful feature of this parametrized family is its monotonicity with respect to 3, i.e. Gg, (V) C
Gp, (V) for By > [Bo. It is easy to see that [(-skeletons contain both relative neighborhood and
Gabriel graphs as special cases. Specifically, the RNG(V) = Go(V) and GG(V) = G1(V). In fact,
as we will see in Section 5 it is possible to design a uniform algorithm for the whole spectrum of
(-skeletons for 1 < g < 2.

(B-skeletons have interesting applications to the analysis of interpoint linkages in empirical net-
works. Kirkpatrick and Radke [KR85] illustrated such an analysis showing examples of road and
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airline networks. In particular, a comparison of links in an empirical network with the set of edges
in the computed [ — skeletons for various values of 3 helps to detect significant patterns.

Lune based (-skeletons can be also defined for 0 < # < 1. To this end the neighborhood of
(p, q) is defined as the intersection of two spheres of the radius 6(p, ¢) /25 which contain p and ¢ in
their boundaries. In fact this extension leads to so called circle-based (-skeletons. For 8 > 1 the
neighborhood U, , of (p, ¢) is defined as the union of two spheres of the radius § x d(p, ¢)/2 passing
through p, ¢. The points p, ¢ are connected with an edge if the neighborhood is empty. The circle
based [(-skeleton for 3 > 1 can be constructed in O(nlogn) time; see [KR85].

3 Properties

Relative neighborhood graphs are related to other prominent geometric structures such as minimum
spanning trees (M ST) and Delaunay triangulations (DT'). The Delaunay triangulation of a set V'
is defined as the dual graph of the Voronoi diagram of V' which is a decomposition of R¢ into n cells,
n the number of points in V. A point z is in the cell associated with v € V if for all w € V' \ {v},
d(z,v) < 0(x,w). Two points in the DT (V) are connected with an edge if the boundaries of their
Voronoi cells intersect. For definitions and properties of the M ST and the DT see for example
[PS86, Ede87, Aur9l].

Toussaint showed that in the Euclidean plane M ST (V) C RNG(V) C DT(V). It implies, in
particular, that the RNG is connected. Figure 3 illustrates the Delaunay triangulation of a point
set and nonempty lunes for these of its edges which are not in the RNG.

Figure 2: DT(V) with four lunes and the RNG(V)

These inclusions can be generalized to other metrics and higher dimensions. A crucial step in
this direction was made by O’Rourke [O’R82]. Studying the RNG in the L; metric he noticed that
the dual graph of the Voronoi diagram is not necessarily a supergraph of the RNG in L; and L.
Instead he proposed a definition of the DT directly in terms of the points of V. Two points in V'



are connected by an edge in the DT if there exists a sphere (with respect to the metric at hand)
such that its boundary contains these points and no point of V' is in the interior of this sphere. This
definition is equivalent to the traditional one for the metric L, in R? space; see [Lee80, O’R82].
Here, for the sake of uniqueness of the DT a general position of points is assumed. In our context
we say that points are in a general position in R? if no d+ 1 of them are coplanar (lie on a common
d — 1 flat) and no d + 2 of them are cospherical (cocircular) with respect to the given metric. In
some cases it will be possible to relax the general position assumption.

This definition of the DT allows extension of the result of Toussaint [Tou80b] that the RNG
is a subgraph of the DT to all of the metrics L,, L, and Ly and to an arbitrary dimension; see
[O’R82].

Similar relationships hold for S-graphsin L,. More specifically, for R? and L, we have M ST (V) C
Gs(V) c DT(V) (1 < 8 < 2); see [JKY91] for L, and [KR85] for L. In particular, the relation
holds for Gabriel graphs; see also Matula and Sokal [MS84].

As we will see in further sections the fact that the DT is a supergraph of the RNG (and
B-graphs) turns out to be very useful in designing efficient algorithms for neighborhood graphs.

4 Size of neighborhood graphs

It is both interesting and important to know lower and upper bounds for the number of edges
in the RNG(V'). The results of the previous section give immediate bounds in two dimensional
space. Since the M ST is a subgraph of the RNG and the RNG is a subgraph of the DT we have
immediately that |[MST (V)| < |[RNG(V)| < |DT(V)|. Expressing this in terms of n = |V| we have
in L, that n—1 < |RNG(V)| < 3n—6. The upper bound follows from the planarity of the DT(V').
Note that a similar argument works for #-graphs as well. A more detailed analysis gives the tighter
bounds of 3n — 8 for the GG (see [MS84]) and 3n — 10, n > 8, for the RNG (see Urquhart [Urq83])
in the Fuclidean plane. The bounds for the RNG and the GG are tight for an infinite number
of n. In the metrics L; and Ly, the RNG can have ©(n?) edges; an example has been given by
Katajainen [Kat88].

Consider now the case of Euclidean R? space. As higher dimensional spaces are easier to discuss,
we will begin with d > 4. A discussion on the 3-dimensional case will be deferred.

The first interesting observation is that the relative neighborhood graphs can be dense in R,
d > 3. The mazimum number of edges of the relative neighborhood graph of n points in R, d > 4,
is Q(n?).

Consider a set V in R* that contains an even number of points with n/2 points of the form
(a,b,0,0) where a® + b*> = 1, and n/2 points of the form (0,0, c,d) where ¢ + d*> = 1. Each pair of
points from different groups forms an edge of the RNG(V); this shows that the size of the RNG
can be 2(n?). Note that the points are not in general position. By embedding the set V into R we
obtain this quadratic bound for any d > 4. Clearly, the same (n?) bound holds for all S-graphs.
The above construction, based on Lenz’s example, is standard and has been used by many authors
for various spatial graphs.

The problem of estimating the sizes of the RNG and the GG in 3 dimensional space is much
more interesting. Let us start with the RNG; again we focus on Euclidean space. The following
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result was the first subquadratic upper bound on the size of the RNG (see [JK91]): the maximum
number of edges of the relative neighborhood graph of n points in d > 3 dimensions is O(n3/2%¢),
for each € > 0.

This result can be established using upper bounds on the size of unit distance graphs. The unit
distance graph of V' is a graph with two points connected by an edge if they are in a particular,
say one unit, distance. Recent results by Clarkson et al. [CEG"89] show that the size of the unit
distance graph of an n point set is bounded by cn®?*¢, where ¢ > 0 is an arbitrary small real
number. In fact, they give this bound in a stronger form of O(n3/2(\s(n)/n)'/*), where \g is related
to the complexity of Davenport-Schinzel sequences. For more discussion on the size of unit distance
graphs in Euclidean spaces see also Chung [Chu89].

To derive an upper bound decompose the RNG into subgraphs of edges of the same length. For
each subgraph an upper bound can be established based on the results of the size of unit distance
graphs. Furthermore, the number of different lengths of edges in the RNG (V') which are adjacent to
any vertex is bounded by a constant independent on V. Hence each vertex participates in a constant
number of subgraphs and an upper bound of O(n3/2*€) for the total number of edges in the RNG
follows. Clearly, any improvement on the upper bound on the size of unit graphs automatically
improves the upper bound on the RNG.

As a remark in passing let us mention that subgraphs of the RNG of edges of the same length
have other interesting properties. For example the interior of a pyramid spanned by 3 edges of such
a subgraph that share a common endpoint has an empty intersection with the remaining edges of
this subgraph. We call this a non-penetration property.

Agarwal and Matousek [AM92] proved an upper bound of O(n*?) using bi-chromatic closest
neighbor pairs and an interesting technique of computing a “small” family of well separated pairs
which include all edges in the RNG; [AESW90]. Let P, @ be two point sets. We say that points
p € P, g € Q form a bi-chromatic closest neighbor pair if 6(p, ¢) = mingepyeq d(x,y). Furthermore,
we say that P and @) are well separated if there exists a pair of cones C, C' with a common apex, a
common axis and the angle at the apex less than 7/3, such that @ C C and P C C'. The following
holds [AM92]: if P, Q are well separated in R¢ then RNG(P U Q) has an edge pg, p € P,q € Q,
if and only if (p,q) is bi-chromatic closest neighbor pair. Based on the result of Edelsbrunner
and Sharir [ES90], the number of edges in the RNG(P U Q) in R?, P, and @ well separated, is
On**m?3 +m+n), n = |P|,m = |Q|. Next, it is possible to cover V C R® by a family of well
separated pairs (Pi,Q1),- .-, (Ps, Qs) with two properties: (i) for each p,q € V, there is (P;, Q;)
with p € P, ¢ € Q, (ii) Xi_, |Pi| + |Qs| = O(nlog®n). Each edge in the RNG connects a pair
of bi-chromatic neighbors in some well separated pair of this family. Hence counting the number
of bi-chromatic neighbor pairs in all of the well separated pairs gives an upper bound on the size
of the RNG. Concluding: the mazximum number of edges of the relative neighborhood graph of n
points in R3 is O(n*/3).

Again, any improvement on the upper bound on the size of bi-chromatic closest neighbor pairs
would improve the upper bound on the RNG.

We do not know about any nontrivial lower bound on the size of the RNG in R3. For the
special case of point sets that do not allow equal distances between pairs of points it is easy to
show that the size of the RNG is linear. This observation also applies to point sets for which the



number of equidistant neighbors for each vertex is bounded by a common constant; in particular it
holds for points in general position. A geometric fact worth noting is that the degree of each vertex
of the RNG, if no isosceles triangles are formed, is bounded by a constant. This is also true for
L,,1 < p < oo (see for example [JK87]). Therefore |[RNG (V)| < ¢|V| for point sets in R that do
not allow equal distances between pairs of points. Alternatively, the size of relative neighborhood
graphs defined by closed lunes is linear.

Size of Gabriel graphs: As we remember, Gabriel graphs are supergraphs of relative neigh-
borhood graphs. It appears that Gabriel graphs can have substantially more edges than the
RNG already in R®. There are point sets in R®> whose Gabriel graphs have Q(n?) edges; see
[Smi89, CEG*90]. Therefore the following result holds: the mazimum number of edges of the
Gabriel graph of n points in d > 3 dimensions is Q(n?).

An example in [CEGT90] gives a point set V' which consists of two groups of n/2 points located
on two circles. These circles are placed in two orthogonal planes and they pass through each other’s
center. The points are located close to these centers; this distance can be precisely specified. A
construction which uses parabolas, and therefore avoids many cocircular points, was provided in
[Smi89]. Consider 2n point on two parabolas; n of them on z = 1—2%/4, y = 0 at z = 0, &€, +-2¢, . ...
and the remaining n points on the parabola z = y?/4 — 1, 2 =0, at y = 0, +¢, +2¢,... where € a
sufficiently small positive number. All the point are on their convex hull. With a small perturbation
of the points we can preserve density of the GG while placing the points in general position.

Interestingly, for any set of n points P in d > 3 dimensions there is a set @ of O(y/nlog?~'n)
points so that the Gabriel graph of P U @ has at most O(n®?log?~'n) edges; see [CEG90]. Thus
by adding extra points we can reduce the size of some Gabriel graphs substantially; furthermore
this set of points can be effectively found.

Expected values for proximity graphs: The expected size of Gabriel graphs and relative
neighborhood graphs in Euclidean R? space for various set distributions has been studied, among
other graphs, by Devroye [Dev88]. He showed that for all densities liminf E(|GG(V)|)/|V]| >
24=1 (E() is the expected value of a given random variable v). Furthermore, for most densities
E(|GG(V)|) ~ 2¢71|V|. This result extends a similar result by Matula and Sokal [MS84] who
demonstrated that for points uniformly distributed in a unit square E(|GG(V)|) ~ 2|V.

For relative neighborhood graphs the expected size is estimated by E(|RNG(V)|)/|V| > Cq+
o(1), where Cy is a constant that depends only on d. In particular, for d = 2 the expected number
of edges in the RNG(V) is at least (1.27 + o(1))|V|.

Several results concerning the expected values for the RNG and the GG, as well as many other
geometric graphs, in the unit density Poisson probabilistic model were given in [Smi89].

Let us mention that considerable work has also been done on computing expected values of
properties such as the expected length, perimeter, and area of a triangle in the DT'. These issues
are well covered in Getis and Boots [GB78]; see also [Mil70].



5 Algorithms

A variety of algorithms has been proposed for the RNG in the literature. They are based on ideas
developed independently by several researchers. ;From a retrospective we can identify techniques
which are common to several approaches.

A paradigm used in most of the algorithms is a refinement approach. It fits to a framework of
filtering (for a general treatment and development of this technique and its application to many
fundamental geometric problems see Chazelle [Cha86].) Applications of filtering for the RNG have
been described in Katajainen [Kat87].

In this approach the RNG is built in stages (usually two) where a sequence of supergraphs
with the RNG as a final graph is constructed. Each supergraph is obtained from the previous by
eliminating edges which can not belong to the RNG. This elimination, called also a pruning, is
based either directly on the definition or uses geometric properties of relative neighborhood graphs.

Often such a process applies other fundamental computational problems, as well as nontrivial
data structures and general algorithm design techniques.

In fact, common to many algorithms for neighborhood graphs is a general method called the
region approach; see [GBT84] for various applications. The main idea of the region approach is to
divide space in such a way that each point is associated with a finite number of simple regions and
the search for the neighbors of the point in these regions reduces to simple queries. One of the most
important general references here is Yao’s paper [Yao82| presenting subquadratic algorithms for
various proximity problems in R¢, e.g., general geographic neighbors which are particularly useful in
algorithms for neighborhood graphs. In addition, the paper illustrates another powerful technique,
balancing, i.e., how to trade preprocessing and query costs to minimize the overall processing time.

Not surprisingly, particularly useful for constructing neighborhood graphs are point location
and range searching algorithms. Point location consists of identifying the region, in a partition of
the geometric space, where the query point is located. Range-search is a problem of counting or
retrieving all points from a given collection of points which are contained in the query region. A
typical query region is a sphere, a lune, a simplex, a halfspace, or a box.

The point location or range-search approach is a natural implication of the way neighborhood
graphs are defined; a search of the neighborhood of an edge gives complete information as to whether
this edge has to be eliminated. The power of this approach for constructing the RNG was recognized
by O’Rourke [O’R82]. He employed an efficient data structure for range queries to construct the
RNG in the Ly, (for arbitrary dimension) and L; metrics. The point location approach was also
taken by Toussaint, Bhattacharya, and Poulsen [TBP84] to obtain a practically efficient algorithm
for computing the Gabriel Graph in all dimensions.

As we will see, the difficulty of the RNG problem will depend on whether the given points are
in general position. Recall that in our context we say that points are in general position in R? if no
(d+1) of them belong to a common (d — 1) flat and no (d + 2) of them are cospherical (cocircular)
with respect to a given metric.
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5.1 2-dimensional space

A straightforward approach to constructing the RNG is to check for each edge and point if this
point is in the neighborhood of the edge. The cost of such a procedure is obviously ©(n?) but this
approach does work for any metric or dimension. (In fact, it works for any neighborhoods for which
a membership test costs O(1).)

One can immediately reduce this complexity by a factor of n recalling that the Delaunay tri-
angulation (which has O(n) edges) is a supergraph of the relative neighborhood graph of a given
point set; this observation led to the first O(n?) algorithm for the RNG [Tou80b].

Clearly the DT(V) is not the only supergraph which can be effectively utilized for constructing
the RNG. A family of such graphs can be obtained using a general approach of frames and narrow
regions; see Yao [Yao82] and Gabow, Bentley and Tarjan [GBT84]. A region associated with a
point v is narrow if for p,s € V' that belong to this region we have §(p, s) < max{d(v,p),d(v,s)}.
Such regions can be obtained, for example, by dividing the space around a given point p into equal
sections by 8 lines passing through p. In particular, Katajainen [Kat88] used octant neighbors as a
supergraph of the RNG. An octant (geographic) neighbor of p in a region r(p) associated with p is
a point of V'\ {p} in r(p) which is closest to p. The octant neighbor graph is obtained by connecting
each point of V' with its geographic neighbors in all regions. Since an octant neighbor graph can be
decomposed into eight planar graphs its size is linear (in L,, 1 < p < co.) Phasing out edges from
this graph by testing them against each point leads to an O(n?) algorithm.

Using octant neighbors and a range query algorithm, e.g., [Cha86, GBT84, Wil85] for rectangles
(intersections of spheres in L; and L.,) Katajainen [Kat88] derived an O(nlogn + m) output
sensitive algorithm for the RNG in L, and L.; m is the output size. To achieve a linear space the
range searching is organized accordingly to the batching technique described in [EO85].

For further results regarding geographic neighbors or the angle restricted nearest neighbor see
also [GS83, Wee89|.

Probably the simplest way to divide the plane into regions is to use a square grid. The cell
technique, see Bentley, Weide, and Yao [BWY80], which leads to a fast expected time algorithm
for many closest point problems, has been used by Katajainen, Nevalainen, and Teuhola [KN86,
KNT87], see also [TM80], to design a linear expected time algorithm for the RNG in an Euclidean
plane. They show that the expected time is linear for the points (in a unit square) generated by a
homogeneous Poisson process. Note that the floor function is essential to apply the cell technique.

More elaborate elimination techniques: The first O(nlogn) algorithm for the RNG in Lo
was developed by Supowit [Sup83]. Supowit was able to organize the elimination of edges from
the DT(V') in O(nlogn) time, matching the cost of building the DT'(V'). The elimination uses the
sweep line technique (see, e.g. [PS86, Ede87]); the sweeping is done in 6 directions (multiples of
7). Assume that we sweep from right to left in the direction parallel to a line [. A sweep status
structure 7" maintains active points (at the beginning 7" is empty); F is set to the DT(V'). During
the sweep any encountered point p € V is inserted into 7. Then, for edges e with the left point p
(in the order of increasing angles with respect to [) and for any point v € T such that the horizontal
line passing through v intersects e we check if v eliminates e. If e is eliminated then e is removed
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from E, otherwise v is deleted and the plane is swept further. The above process, repeated in the six
directions, is able to extract all edges of the DT (V') which do not belong to the RNG(V') and can
be implemented to take O(nlogn) time. This gives an O(nlogn) algorithm, which is optimal. In
fact Supowit demonstrated a simple linear time reduction of sorting to the RNG in 1-dimensional
Euclidean space; the reduction is also valid in L,,.

Using a similar approach Lee [Lee85] has designed an O(nlogn) time algorithm to construct
the RNG in L; and L., metrics. The starting graph is again the Delaunay triangulation and the
assumption that no four points in V' are cocircular (in the sense of L;) is essential.

Construction of the GG in the Euclidean plane is simpler. The first optimal O(n logn) algorithm
was given by Matula and Sokal [MS84], where applications to geographic variation research and
clustering were discussed. The algorithm is based on an observation that the Gabriel graph of V
contains those edges in the DT(V') which do not intersect their dual Voronoi edges: see Figure 5.1.
Since the Voronoi Diagram and DT (V') can be constructed in O(nlogn) time the bound follows.
Clearly, the method can be extended to R

Figure 3: DT(V), the Voronoi Diagram of V, and GG(V)

Another elimination strategy for the RNG has been proposed in [JK87] and later improved
and extended by Jaromczyk, Kowaluk, and Yao [JKY91]. This strategy is based on an interesting
structure of edges in the DT'(V) that do not belong to the RNG(V). Pick a triangle A in the
DT (V) and one of its vertices v. Then check if v eliminates the opposite edge of A; call this edge
e. If yes then analyze if any two edges of the triangle adjacent to A along the edge e is eliminated
by v. Continue this process until no edge is eliminated by v; the obtained sequence of edges will be
called an elimination path of v; see Figure 5.1. This process does not necessarily detect all edges
eliminated by v. Yet one can prove that each edge not in the RNG belongs to the elimination
path for some point in V. If one continues constructing elimination paths for other points it will
be noticed that paths that happen to coincide will never split apart. They grow into elimination
trees (this term is slightly misleading since some elimination paths can have a cycle). This follows
from an observation that if a point eliminates an edge of a triangle then it may eliminate only the
strictly longer of the two remaining edges of this triangle. This special structure allows an efficient
elimination of edges not in the RNG. The elimination paths and elimination trees are built to
form so called an elimination forest which carries all the information about the RNG. A union-find
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structure is helpful [GT85].

Figure 4: DT(V) and lunes showing an elimination path

We can think about this construction as a sweeping guided by the shape of the DT (V) rather
than by the coordinate system. This sweeping can be accomplished in time O(n) using the Gabow
and Tarjan [GT85] implementation for a special case of union-find structure. If we are willing to
sacrifice the linear time of this phase to gain simplicity we can use another efficient and simultane-
ously very simple, almost linear, implementation for union-find such as a height ranking with path
compression; see [Tar83].

It is interesting to note that the order of constructing elimination paths and composing them
into an elimination forest is irrelevant. In general different orders will lead to different elimination
forests; nevertheless all edges not in the RNG will always be eliminated. An elimination forest is
an important structure and can be useful in other algorithms.

Recently, Hwang [Hwa90] used the idea of elimination paths to construct the RNG in a divide
and conquer fashion. Elimination forests are carried over through the levels of recursion.

In view of linear expected time algorithms to construct the DT(V) for some distributions of
points, see [Kat87, Dwy88| and [BWY80, Mau84], the idea of elimination forests and results of
[JKY91] gives a simple O(n) expected time algorithm for 3-graphs.

We will finish this section with a simple algorithm to illustrate the use of the point location
method in the elimination phase. This algorithm finds, for a planar point set, all edges in the RNG
that are adjacent to a given vertex v. As we will see in the next section, the algorithm has a natural
generalization to 3 dimensional space.

We start with the set of all edges adjacent to the vertex v. A currently shortest edge e is found
and all edges of the length equal to e are stored. Next all edges longer than e that form with e an
angle less than % are discarded; clearly they do not belong to the RNG. For the remaining (longer
than e) edges the same process is repeated until no edges are left. At this moment edges of the
same length are grouped into orbits. Clearly, by the construction, the number of orbits associated
with v is not larger than (27)/(3) = 6.
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Not all edges in the orbits have to be in the RNG and the next phase will discard them. A
helpful geometric fact is that if the angle between two adjacent edges e and w ( w a shorter edge) is
smaller than a,, = arccos(%) then e does not belong to the RNG; |e] is fixed for a given orbit. In
other words, if for e there is a shorter edge w such that e is contained in the angular sector (cone)
with the axis w and the angle equal to 2a,, then e is not in the RNG. In this case e is the longest
edge in the triangle spanned by e and w. Figure 5.1 illustrates this elimination. The edges on the
orbit which intersect the perpendicular bisector of e are not in the RNG; each of them form with

w an angle less than q,.

Figure 5: an orbit an its edges eliminated by w

Now the problem reduces to the location of e in the union of angular sectors determined by all
edges that are adjacent and shorter than e. After sorting the edges with respect to angles such a
union can be found in a linear time. In fact, edges in all orbits can be sorted in an O(n?) rather
than O(n%logn) time. To this end observe that the order of the slopes of lines determined by n
points can be found in O(N?) time; see [OW88]. A simple binary search determines in O(logn)
steps whether e belongs to this union. Since there are at most 6 orbits for a given point and at
most n edges the total time to identify all edges in the RNG that are adjacent to a given point v
is O(nlogn). Clearly, the same result can be obtained using the Delaunay diagram. We will see in
further sections that the above ideas can be extended to the 3 dimensional Euclidean case.

In R? the edge location in the union of angular sectors, or equivalently a point location in the
union of arcs, can be accomplished faster, in time proportional to n (as suggested by one of the
referees.) Observe that each angle of elimination 2a,, > %’T and the corresponding arc occupies at
least one third of a circle. Let a,b,c be equidistant points on the circle. We can group the arcs
with respect to which of a, b, ¢ they contain (ties can be resolved arbitrarily). The union in each
group can be determined by finding the extremal arc endpoints in time proportional to the number
of arcs. Now each point can be located in the union of all arcs in a constant time. Consequently,
all edges in the RNG which are adjacent to a given point can be found in an O(n) time.

For completeness observe that this result yields immediately an O(n?) algorithm for the RNG
in an Euclidean real plane. It is also possible to show that the total number of edges in all the

orbits is subquadratic.
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We will finish this section mentioning two special cases.

Supowit [Sup83] considered the RNG problem for convex polygons and he provided an optimal
O(n) time algorithm. Note that the same result can be established by combining a linear time
construction of Delaunay triangulation for points forming a convex hull presented by Aggarwal et
al. [AGSS87] with a linear time algorithm for constructing the RNG from the DT [JKY91].

A linear time algorithm for computing the RNG of unimodal polygons, not necessarily convex,
was designed by Olariu [Ola89].

5.2 3-dimensional space

A straightforward approach gives an O(n?®) time algorithm for the RNG in 3 dimensions, see
[Tou80b].

In a manner similar to the 2 dimensional case this time complexity can be reduced by con-
structing a “small” supergraph of the RNG. The first such construction was given by Supowit
[Sup83] for Euclidean spaces. The space around each point of v € V' is partitioned into a number of
narrow regions. Recall that a region is narrow if for p, s € V' that belong to the region of v we have
d(p,s) < max{d(v,p),d(v,s)}. The number of regions is independent of n. For points in general
position, based on such a partition, it is easy to construct a linear size supergraph of the RNG
in O(n?) time. Note that it can be also done in o(n?) time using the technique of Yao [Yao82].
Specifically, the only candidate for the RNG in a given region is the edge joining v with the point in
this region closest to v (the geographic neighbor). Due to the assumption about general position, in
each region there is only a bounded (by a constant) number of such points. Note that the original
assumption is that there are no isosceles triangles formed by the points in a given set. The algorithm
works also if the number of equal length edges adjacent to each vertex is bounded by a common
constant; in particular it holds for points in general position. A straightforward elimination of edges
from this graph yields the RNG in total time O(n?). By virtue of the results by Yao [Yao82] and
Gabow, Bentley, and Tarjan [GBT84] Supowit’s algorithm extends to L, metrics.

Elaborating on the above ideas and using balancing Smith [Smi89] showed how the time com-
plexity can be reduced to O(n?*/'2logn); general position is assumed.

Using another approach, Jaromczyk and Kowaluk [JK87] demonstrated a simple O(n?) algorithm
for points in general position in L, (recall that the original assumption was a lack of isosceles
triangles). For each point p, from the set of edges adjacent to p we remove iteratively the currently
shortest edge pg and eliminate all edges pr such that 6(p,r) > (g, 7). Each such pr is the longest
edge in the triangle Apgr and therefore is not in the RNG. The RNG is the collection of edges
which survive such a test, i.e., are never eliminated in this process. When this process terminates
the number of edges adjacent to p is bounded by a constant, provided that there are no two equal
distances between points of V' (or their number is bounded by a constant). It follows from a fact
that neither of pw,pqg € RNG(V) is the longest edge in the triangle Apwq and the angle opposite
to the longest edge is greater than some constant c(d, L,) which depends only on d and the L.
Hence the number of iterations for each point is proportional to ¢(d, L,) X n and the overall cost of
the algorithm is O(c(d, L,)n?).

A similar method can be used for constructing the Gabriel graph of V' in Euclidean spaces. A
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useful observation here is that pr ¢ GG (V) if there is ¢ such that /pgr > 7 /2. Starting with the
shortest edge pg adjacent to p we eliminate all edges pr with /pgr > m /2. The process is iterated for
all currently shortest non-eliminated edges until no more edges adjacent to p are eliminated. The
edges, E, which remain after such elimination are in the GG the cost associated with each edge in
FE is proportional to n. It gives an O(En) algorithm for the GG in the Euclidean R space. The cost
of the algorithm is ©(n?) since the GG is connected and has at least n — 1 edges. The algorithm
doesn’t depend on general position of input points. A variant of this algorithm is presented in
[Smi89)].

A subquadratic algorithm for the RNG of points in d-dimensional spaces has been offered by
Sun and Chang [SC91c]. The algorithm constructs the RNG(V') of a n point set in an Euclidean
d dimensional space (d is fixed) in time O(n?~% (logn)'~*%), where a(d) = 271, The points
are assumed to be in general position. The geographical nearest neighbor graph is used as a
departure point. Recall that the GNG is a linear size supergraph of the RNG, see [Sup83], and
it can be constructed in O(n?>~*% (logn)'~%¥); see [Ya082]. The next stage, an elimination, uses
an arrangement of (d + 1) - dimensional hyperplanes. The hyperplanes are the images, in the
inverse transformation, of those spheres which bound lunes generated by the edges of the GNG.
Next the algorithm identifies lunes which contain a point from V. By well-know properties of the
inverse transformation the point location in an arrangement of spheres (lunes) in R¢ is translated
into location problem in the corresponding arrangement of hyperplanes in R**'. Su and Chang
used an algorithm from Dodge [Dod72] and the balancing technique to preprocess hyperplanes for
supporting point location queries.

Using faster existing algorithms for the nearest neighbor search in 3 dimensional spaces they
obtained an O(n?*/1logn) time algorithm to construct the RNG of points in R? (recall that general
position is assumed).

Extending the idea of elimination based on angles between edges Jaromczyk and Kowaluk [JK91]
demonstrated an O(n?logn) time algorithm for arbitrary point sets in 3-dimensional Euclidean
space. The algorithm finds for each vertex v all edges of the RNG adjacent to v. As in the 2
dimensional case orbits of edges of the same length are formed (see the previous subsection). The
number of orbits for each vertex is bounded by a constant independent of n. This constant is equal
to the maximum number of segments with a common endpoint which form angles not less than %.

The orbits associated with v contain all edges in the RNG adjacent to v. However, they can
also include extra edges. The size of the graph determined by the union of the orbits for all the
vertices is O(n®?+¢); see [JK91] or Section 4. A straightforward elimination leads to an O(n®?+¢)
algorithm. We can capitalize, however, on a special form of orbits and perform this elimination
faster.

Recall that if the angle between two adjacent edges e and w ( w a shorter edge) is smaller
than arccos(%‘) then e does not belong to the RNG. This fact, which we have used to derive a
2-dimensional algorithm, can be utilized in this situation as follows. Consider an orbit of v and let
e belong to this orbit. For each edge w with an endpoint v which is shorter than e take an open
cone of revolution with its axis containing w and the angle at its apex equal to 2 X arccos(%).
Clearly, e is not in the RNG if e is in the union of such cones (with v added).

Alternatively, we can use spherical cups obtained by intersecting the cones with the boundary of
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the sphere B(v, |e|) and locate the endpoint of e in the union of these cups. A suitable stereographic
projection transforms the problem to a point location in the union of (open) circles. To solve this
problem we can use Voronoi diagrams in Laguerre geometry [IIM85] or power diagrams [Aur88].
After O(nlogn) preprocessing such a location can be done in O(logn) time per point. Hence for
each vertex v the cost of eliminating of extra edges from orbits is O(nlogn) which gives in total
O(n?logn) time.

Katajainen and Nevalainen [KN87] designed a simple algorithm based on Urquhart [Urq80].
The algorithm works in d dimentional spaces and the metrics L1, L,, L. Interestingly, its time
complexity analysis uses the region approach. In particular, they showed that in R? the running
time is bounded by O(n®?). Using methods of [JK91] we can in fact prove that this algorithm has
O(n5/ 2T¢) time complexity for arbitrary point sets in 3-dimensional Euclidean space.

Noticeable progress in three and higher dimensional spaces has been recently made by Agarwal
and Matousek [AM92]. In the first step a family of well separated pairs of subsets of V' is constructed;
see Section 4 for the definitions of the well-separated pairs and bi-chromatic neighbors. This family
has a property that each RNG edge connects some bi-chromatic closest neighbors in a separated
pair of the family. Thererefore, computation of all bi-chromatic closest neighbors for all the points
in all the separated pairs gives a supergraph of the RNG. To eliminate from this supergraph edges
which are not the RNG(V) an algorithm for a fast point location in an arrangement of lunes is
designed. It uses a data structure based on the partitioning scheme of Chazelle et al. [CSW90a)
and an arrangement of spheres based on Clarkson et al. [CSW90b]. If points are in general position
then: for a set V of n points in R® the RNG(V) can be computed in O(n3/? + ¢), for every e > 0.
In R%, for points in general position the RNG(V) can be constructed in time O(nQ(l_ﬁHe).

It is also possible, see [AM92], to construct the RNG(V) in R® in time O(n"/**¢), € > 0, for
arbitrary point sets.

In the L, metric the elimination phase can be based on fast point queries in d — rectangles
(intersections of spheres in Ly, ). In particular, in R4 the RNG can be constructed in O(n(logn)¢ 1)
time; general position of points is assumed, see [Smi89).

The results discussed in this section for the RNG are summarized in the following table where
“big-O” notation is omitted.
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dimension | metric complexity reference remarks
n? [Tou80b, KN86, Kat88] [KN86] in Lo
R? L, nlogn [Sup83] in Lo
n [JKY91] when DT is given
n*logn [O’R82]
Loo, L1 nlogn [Lee85] general position
nlogn +m [Kat88] m output size
nb/2+e [KN87]
L, n?logn [JK91]
O(n*71%logn) [SCI1c] general position
n/Ate [AM92]
R3 n3/2Fe [AM92] general position
L, n? [Sup83, JK87, KN8&7] general position
Ly n?logn [O’R82] general position
n(logn)? [Smi89] n(logn)?~! in R?

The Relative Neighborhood Graphs - Summary of results

6 Variants and special cases

The concept of relative neighborhood as a method to define graphs can be extended and modified
in numerous directions. Usually modifications regard either elimination rules or the shape of a
neighborhood. This section will discuss some of these interesting variants. The first group of
modifications pertains to the relaxation of elimination rules.

k-relative neighborhood graphs: Let A, , = B(p,d(p,q))NB(q,d(p,q)),i.e. U,,is alune. The
edges of the k-relative neighborhood graph of V', k — RNG(V'), are defined as follows:

(p,q) € E if and only if the cardinality of A, , NV is less than £.

Clearly, the 1-RNG(V') is the RNG(V'); see Figure 6.

O

Figure 6: RNG and 2-RNG
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Properties and applications of k-RNG(V) in Euclidean 2 dimensional spaces are discussed in
[SCI1b]. In general, k-RNG graphs in R? can contain intersecting edges yet their size is linear with
respect to kn.

A simple probabilistic argument showing that the size of the k — RNG in R? is O(k*/3n*/?) was
given in [AM92].

Consider a subset R C V of r = L%J points; each subset chosen with equal probability. A pair
of points p, ¢ which is an edge in the K — RNG(V) is also an edge in the RNG(R) if p,q € R and

Ap NV is empty. The probability of such an event is at least ( " ;f ; 2 > / ( 7; > = Q(1/k?%).

Therefore, the expected size of the RNG(R) is bounded by Q(M/k?) where M is the size of the
k — RNG(V). However, in R? the size of the RNG of an r = |n/k| element set is O(r*/?), see
Section 4. Hence M = O(k*/3n*/3).

Clearly, a similar argument can be used for other k-neighborhood graphs. For example a bound
of O(kn) can be established for the kK — RNG in R?. Let us note that the same bound was also
proved in [SC91b] based on the size of the k-geographic neighbors graph.

An O(n®3logn) algorithm to construct the & — RNG, for a fixed k, has been presented in
[SCI1b]. The algorithm has a traditional organization and works in two stages. At first the
k — GNG(V), the k - geographical neighborhood graph of V, is constructed. The k — GNG is a
generalization of geographical neighborhood graph and is defined as follows. Let W be a narrow
region. A point p € V N W is a kth nearest geographical neighbor of v in W if there are exactly
k —1 points of V' in W which are closer to v than p. The £k —GNG is obtained by connecting points
with their 1st through kth nearest geographical neighbors. The k-geographical neighborhood graph
is a supergraph of the k — RNG and it can have at most 18kn edges: see [SC91b]. The construction
of the k — GNG is modeled on an algorithm for the geographical neighborhood graph presented in
[Yao82].

In the second stage the lunes determined by edges in the k—G NG are preprocessed for supporting
fast point location queries. Using the balancing technique it is possible to preprocess lunes and
perform all n point locations in the lunes, in order to eliminate edges which have at least k neighbors,
in time not exceeding the cost spent on constructing k — GNG.

Recently, Agarwal and Matousek [AM92] showed that the k — RNG of a set of n points in R4
in general position, where k is a fixed constant, can be computed in time O(nz(l_#l)“), e>0.If
points are in arbitrary position then the k — RNG can be computed in time O(n*/3*¢) for points in
R?, and in time O(n/4*) for points in R®.

In Chang et al. [CTL90] the k — RNG is studied in an interesting context of bottleneck Hamil-
tonian cycles. For an application of the £ — RNG to Euclidean bottleneck matchings see also
[CTLO1].

A minmaz (bottleneck) Hamiltonian cycle of a graph is a Hamiltonian cycle which minimizes
the length of its longest edge over all Hamiltonian cycles of this graph. Consider a complete graph
induced by a set V' of points in an Euclidean plane. Such a graph has a minmax Hamiltonian cycle
which is contained in the 20 — RNG(V); see [CTL90]. In fact, there is a transformation which
after a finite number of steps produces, from any given minmax Hamiltonian cycle, a minmax
Hamiltonian cycle which is a subgraph of the 20 — RNG. Correctness of the transformation is
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based on an interesting observation related to narrow regions. Consider a set S of points contained
in cone(¥,1), /(¥,%) < a and t the apex of the cone. Assume that for all points p,q € S the
following properties hold, r > 0: §(t,p) > r 6(p,q) > r 6(p,q) > 6(t,p) —r, and d(p,q) > 6(t,q) —r.
Then there exists a constant ¢ depending only on « such that |S| < ¢; see [CTL90].

Now consider a minmax Hamiltonian cycle H and its longest edge pg not in the Kk — RNG. (The
value of £ can be specified; k£ = 20 in [CTL90].) Since pq is not an edge in the £k — RNG(V), the
lune A, , contains at least £ points, ¢1,...,%y,, of V. If any pair ¢;,%; is connected by an edge in
H then we can replace pg by a sequence pt;,t;t;,1;q; the new cycle is again a minmax Hamiltonian
cycle. Otherwise, let w; be a direct predecessor of t; in H; assume that H has a counterclockwise
orientation. If £ is large enough then by virtue of the above observation on the narrow regions there
are two points w;, w; that satisfy at least one of the following conditions:

(a) 6(g,wi) <4(p,q), or
(b) (w;, w;) < d(p,q), or
(c) 6(ws, wj) < 6(w, t;) or 6(w;, w;) < §(wj,t5).

In each case the edge pq can be replaced by other edges without increasing the length of the
longest edge. For example, in case (b) the edges pg, w;t;, w;t; can be substituted with pt;, ;t;, w;q.
Moreover, each application of this transformation replaces a longest edge not in the £k — RNG by
some shorter edges. Hence, after a finite number of steps we obtain a minmax Hamiltonian cycle
which is a subgraph of the £ — RNG.

A related and important problem of constructing a minmaz length triangulation, i.e., a triangu-
lation which minimizes the longest edge, has been studied by Edelsbrunner and Tan [ET91]. They
have proved that every finite point set V in R? has a minmax length triangulation which is a super-
graph of the RNG(V'). The lemma suggests that construction of a minmax length triangulation can
start from the RNG(V). It leads immediately to a cubic time construction when existing dynamic
programming algorithms for triangulations are utilized; see [K1i80]. It also provides the first poly-
nomial time algorithm for this problem. Furthermore, as demonstrated in [ET91], an even faster
quadratic time algorithm can be developed. The algorithm works for a general class of metrics.

k - Gabriel graphs: In a similar fashion k-Gabriel graphs can be introduced; see [SC90]. Let
I, = B(&L, @), i.e. Uy, is a diameter sphere. The edges of the k-Gabriel graph of V, the

k — GG(V), are defined as follows:
(p,q) € E if and only if the cardinality of I, , N V' is less than k.

Properties of these graphs and applications to bottleneck biconnected graphs, and Euclidean bot-
tleneck matchings are discussed in [SC90] where an O(k*nlogn) time construction for the k — GG
in R? is presented.
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Constrained relative neighborhood graphs and Gabriel graphs: An interesting extension
of relative neighborhood graphs has been investigated by Su and Chang [SC91a]. Let V be a set
of n points in a plane and 7" be a set of nonintersecting line segments with their endpoints in V.
Clearly, the number of segments in 7 is of order O(n). We say that two points in V' are visible if
their connecting line segment does not intersect any edge in 7.

The constrained relative neighborhood graph of VUT, CRNG(V UT), is defined as a graph with
vertices V and the set of edges F such that (p,q) € E if and only if:

1. (p,q) € T, or

2. p, q are visible and A, , doesn’t contain points in V' which are visible from both p and gq.

-
Figure 7: a polygon, the RNG of its vertices, and its CRNG

Figure 6 illustrates a polygon T', the RNG(V) of its vertices, and its CRNG. Interestingly, a
special case of the CRNG, where T forms a simple polygon, was introduced much earlier in [ET88].
Because of its applications to pattern recognition we will discuss this special case separately.

It appears that CRNG(V UT) is a subgraph of the constrained Delaunay triangulation of V
and T'; see [SC91a]. The constrained Delaunay triangulation of V' and T, CDT(V,T), contains all
segments in 7. In addition, it includes all edges (p, ¢) such that p, ¢ are visible and there is a sphere
with its boundary containing p, ¢ which does not contain points of V' visible from both p and q. The
CDT(V,T) can be constructed in O(nlogn) time; see [Aur91]. Using a process similar to Supowit’s
sweep it is possible to eliminate edges from CDT(V,T)\ CRNG(V UT) in O(nlogn) time.

Constrained Gabriel graphs, CGG, are defined in an analogous fashion. They can be obtained
from the CDT in O(n) time. To this end it is sufficient to consider obtuse and right angle triangles
in the CDT. After eliminating from these triangles the longest edges which are not in 7" we obtain
the desired CGG [SCI1a).

Clearly, the whole concept can be extended to (-graphs. Furthermore, using the elimination
forest structure of [JKY91], the constrained S-graph (1 < g < 2) can be constructed in an O(n)
time.
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Relative neighborhood decomposition of a simple polygon: The relative neighborhood de-
composition of a simple polygon is connected to constrained relative neighborhood graphs discussed
earlier in this section. Let P be a simple polygon, V be its set of vertices. We set the neighborhood
Up,q to be the lune A, ,.

The relative neighborhood decomposition of P, RND(P), is defined as a set of these edges pq
which are diagonals of P and if v € A, , then at least one of pv, qv intersects the boundary of P.

The concept of the RN D has been introduced by Toussaint [Tou80c]. Intuitively, we can think
that an edge of P is an opaque barrier. A point can have an impact on the segment pg only if no
barrier separates them.

The RN D can be used to decompose simple polygons into perceptually meaningful components
and is thus useful in pattern recognition.

ElGindy and Toussaint [ET88| discussed properties and several algorithms for the RND as
well as the Gabriel decomposition which is defined analogously. In particular, they show that the
RND(P) is a planar graph and that it can be constructed in time O(n?) (n the number of edges
in P.)

The RN D can be viewed as a special case of a constrained relative neighborhood graph. Based
on algorithms for the CRNG it can be constructed in time O(nlogn).

The rectangular influence graph: Ichino and Sklansky [IS85] defined the rectangular influence
graph, RIG(V), assuming as the neighborhood U, , of points p, ¢ the smallest coordinate oriented
rectangle containing these points. They showed that the RIG(V) is a supergraph of GG(V) and
therefore also a supergraph of the RNG(V) in L,. However, in general, the rectangular influence
graph is not a subgraph of the DT.

In addition, variants such as an interclass R/G and mutual neighborhood graphs were intro-
duced. In our terminology, the mutual neighborhood graph can be viewed as a graph defined over
two point sets V7 and V5. The mutual graph M NG(V;|V3) has edges for these pairs of points in V;
which neighborhood does not contain points from V5.

Several applications of the RIG, the interclass RIG, and the M NG are presented in [IS85]. In
particular, it is argued that these graphs are useful in the design of piecewise linear classifiers, and
in clustering methods applicable to mixed feature variables.

In this context we also mention direct dominance pairs which are applicable to the rectangle

enclosure problem. Algorithms for reporting all direct dominance pairs are given in Gutting, Nurmi
and Ottman [GNOS85|.

Other graphs: There is a large family of neighborhood graphs that we have not mentioned here.

This family includes such important and interesting graphs as the sphere of influence graph
introduced by Toussaint [Tou88| and «a-graphs introduced by Edelsbrunner, Kirkpatrick and Seidel
[EKS83]. Both graphs are useful in dot pattern and shape analysis [Rad88]. They also have several
interesting graph-theoretical properties [AH85, Tou88, EKS83]. We expand on these graphs in
Section 7.

Several variants of 3 graphs are discussed in [KR85]. The ideas of [KR85] can be generalized
and expanded on in various directions. Some discussion on possible generalizations, in particular
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with an eye toward applications, is given in [Rad88|.

A recent paper by Veltkamp [Vel90] proposes a parametrized family of y-neighborhood graphs.
The ~-graph can be reduced to the circle based (-skeleton, to the DT, or to the convex hull for
specific parameter values.

An interesting variant of a digital geometry version of the RNG applied to computer vision is
given in Toriwaki and Yokoi [TY8S].
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7 Applications

We have already touched briefly on some applications as different neighborhood graphs were intro-
duced. In this section we consider applications in more detail. We will discuss graphs and structures
which are related to the RNG as members of the same family belonging to computational morphol-

ogy.

7.1 Morphology and Computer Vision

Dot Patterns The central problem in computer vision begins with a grey-level intensity array
of a visual pattern or scene and culminates with a description of the scene. This description is a
marriage of the intensity array itself (the bottom-up or data-driven information) and the objective
for which it is viewed (the top-down or conceptually-driven information). Considerable attention
has been devoted to low-level vision, i.e., the aspect dealing with the analysis of the intensity array
up to the level of figure-background separation. The main purpose of analyzing an intensity array
at this level is to form a low-level description that is independent of any final conceptually-driven
description. Marr [Mar76] has called such a description a primal sketch of the intensity array. One
class of patterns or scenes which have been studied extensively is the so-called dot pattern.

When dots in the plane have a finite diameter so that they are visible, and when they are fairly
densely distributed in some region in the plane then a human observer is quick to perceive the
“shape” of such a set. These sets are usually referred to as dot patterns or dot figures. A polygonal
description of the boundary of the shape is referred to as the shape hull of a dot pattern, where the
vertices are given as the coordinates of the dot centers.

There are two versions of the shape hull problem: in one there are no “holes” in the dot pattern
and the dot pattern is “simply connected” and hence the shape hull is a simple polygon, whereas in
the more difficult problem both “holes” and “disconnected” components may exist. To add to this
difficulty, in some instances illusory contours are perceived between “disconnected” components as
illustrated by Kennedy and Ware [KW78]. For more details and early approaches see Toussaint
[Tou80a] and Medek [Med81].

In addition to describing the shape or structure of a set of points by its shape-hull or external
shape we may also use the skeleton or internal shape. An early step in this direction was taken by
Zahn [Zah71] with the minimal spanning tree. More recent approaches have used the RNG [IS85].

Most of the early approaches suffer from various deficiencies such as computational inefficiency,
or dependence on too many parameters which must be fine-tuned in order to obtain satisfactory
performance for the task at hand.

A very elegant definition for the external shape of a set of points was put forward by Edels-
brunner, Kirkpatrick, and Seidel [EKS83]. They have proposed a natural generalization of convex
hulls that they call a-~hulls. The a-hull of a point set is based on the notion of generalized discs in
the plane. For a real number o a generalized disc of radius é is a (standard) disk of the radius é
if « > 0. If < 0it is the complement of a disc of the radius é It is halfplane for a = 0.

The a — hull of a point set S is defined to be the intersection of all closed generalized discs of
radius é that contain all the points of S. The convex hull of S is exactly the 0 — hull. The family
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of a-hulls includes a spectrum of enclosing regions of S.

A combinatorial variant of the a-hull defined in [EKS83] is called the a— shape. It can be viewed
as the boundary of the a-hull with curved edges replaced by straight edges. Unlike the family of
a-hulls, the family of distinct a-shapes has only finitely many members. They provide a spectrum
of progressively more detailed descriptions of the external shape of a given point set; they can be
calculated in O(nlogn) time for n point sets. For more details see [EKS83] and [Ede87].

Note that the idea of a-hulls is closely related to the notions of opening and closing sets, found in
mathematical morphology; see [Mat75, Ser82, Tou85]. The two dimensional a-shapes are connected
to the dot patterns [Fai79, Fai83|, to the circle diagrams utilized in cluster analysis [Mos67], to the
muscle fiber analysis [Per88], and to shape feature analysis [STY91]. An extension of a-shapes to
R? and O(n?) algorithm that constructs for n points a representation of the a-shapes for all values
of o has been presented by Edelsbrunner and Miicke [EM92].

A new methodology for describing the internal shape of point sets was outlined by Kirkpatrick
and Radke [KR85] where the notion of 3 — graphs was introduced.

Another simple and elegant method for extracting the shape of a dot pattern is due to Rosenberg
and Langridge [RL73]. The algorithm is free of parameter tuning. It is limited, however, to single
objects; its computational complexity is O(n?).

Toussaint [Tou88| proposed a graph that appears to capture the essence of the primal sketch for
dot patterns of arbitrary complexity. It seems that the graph, which is called the sphere-of-influence
graph, suffers from none of the drawbacks of the previous methods. It delivers either the “internal”
structure in the form of a “skeleton” or the “external” structure in the form of a “shape-hull’ as
a function of what the data look like; see Figure 7.1. Secondly, it can be applied to a scene of
disconnected objects and it works without tuning of parameters. In addition, the graph affords a
graph-theoretical explanation of some visual illusions such as the Mueller-Lyer illusion.

Let V = {pi,...,pn} be a finite set of points in the plane. For each point p € V, let r, be the
closest distance to any other point in the set, and let C, be the circle of radius r, centered at p.

Figure 8: the sphere-of-influence graph

The sphere of influence graph is a graph on V' with an edge between points p, ¢ if and only if the
circles Cp, C, intersect in at least two places. The sphere of influence graph has at most cn edges
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where ¢ is a constant; see [AH85). This constant is not greater than 173; for a discussion on this

issue see [AH85, ERW89] and also [Rei48, BE51]. It implies, as was observed by ElGindy, that the
algorithm of Bentley and Ottman [BO79] for reporting intersections can be used to find the sphere
of influence graph in O(nlogn) time. This is optimal in the decision tree model; see [AH85].

A general family of graphs related to the sphere-of-influence graph, although based on a slightly
different definition and with a different purpose, has been studied in [ERW89, Rot88|.

Guibas, Pach and Sharir [GPS92] have recently generalized the sphere-of-influence graph to k-th
sphere-of-influence. Given a set V of n points in R%, the k-th sphere-of-influence of a point z € V
is the smallest closed ball centered at « and containing more than k& points of V' (including z). The
case k = 1 gives the standard sphere of influence. The k-th sphere-of-influence graph Gi(V) of V' is
a graph whose vertices are the points of V', and two points are connected by an edge if their k-th
sphere of influence intersect. They show, extending results for 1-st sphere-of-influence graph from
[AH85, ERW8Y], that there is a constant ¢; > 0 depending only on d such that the number of edges
in Gi(v) is at most cgkn. They also give an algorithm that computes the k-th sphere-of-influence
graph in time O(nQ_W“ + knlog®n), for any € > 0.

Even for £ = 1 the sphere-of-influence graph need not be connected nor planar. In [JLM89]
trees that are sphere-of-influence graphs are characterized. The geometric notion of the sphere of
influence hase also been modified to a graph theoretic sense by Harary et al., [HJLM90].

Texture Discrimination There are many computer vision problems where the patterns are
neither dot patterns nor line pattern but fextures. This is particularly so in the satellite image
analysis of the earth.

Toriwaki and Yokoi [T'Y88] have applied the RNG and the GG to the problem of discriminating
between different textures.

Monotonic Search Networks A graph embedded into the plane is called monotone if for every
pair of vertices p, ¢ there is a path p = vy, vy, ..., vx_1, vx = ¢ such that §(v;, q) > §(viy1,q) for
1=1,...,k—1.

A useful property of monotone graphs is that the distance can be used to guide efficient traversal
of the graph. Dearholt et al. [DGK87] have used a monotone graph called Monotonic Search
Network as the underlying structure for an associative database for computer vision. Kurup [Kur91]
showed that the Delaunay triangulation is a monotone graph which in general is not true for the
GG, the RNG and the minimum spanning tree. He observed, however, that the RNG can be
extended to a monotone graph, which is minimal in some sense, and consequently it can be used as
a base for monotonic search networks [DGK88| which find application in the design of data bases
for computer vision.

7.2 Geographic Analysis

Underlying the study of geographic analysis is spatial analysis [GB78] the field of study which
examines the spatial structure and association of phenomena. This is a large and well established
area of geography. The RNG and other proximity graphs may revolutionize the manner in which
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the spatial analysts do their work. For a survey of applications of neighborhood graphs to spatial
analysis the reader is referred to Radke [Rad88].

7.3 Pattern Classification

In the non-parametric classification problem a set of n feature vectors is available. It is taken
from a collected data set {X,0} = {(X1,01),..., (X, 0,)}, where X; and ©; denote the feature
vector of the ith object and the class label of this object, respectively. One of several powerful
classification techniques is the so-called nearest-neighbor rule (NN-rule) [CH67, Dev81]. Let Y be
a new object (vector feature) to be classified. The NN-rule classifies Y as belonging to class Oy
where X € {X,..., X, } is the feature vector closest to Y.

In the past some practitioners avoided using the NN-rule because early algorithms were inefficient
and had to store all data {X,©}. Both of these problems have been eradicated with techniques
from computational geometry. Various methods exist for finding nearest neighbors including an
optimal O(nlogn) algorithm [Vai89]. For other approaches see also [FBF77, LP77]. Furthermore,
not all the “training” data {X, ©} is required to be stored. Methods have been developed [TBP84]
to edit redundant members of {X,©} in order to obtain a relatively small subset of {X,©} that
implements exactly the same decision rule as using all of {X,©}. Such methods depend heavily
on the use of Voronoi diagrams and proximity graphs such as the RNG and the Gabriel graph
[TBP84].

Let us finish with a few further applications of the RNG. Lee [Lee91| applied the RNG to
computing shortest rectilinear paths; it is an element of a design problem in VLS. In Lefkovitch
[Lef87] the RNG are used in cluster analysis in ecology. Finally, in [Lef85, Lef84] the RNG found
an application in comparing dissimilarity matrices.

8 Conclusion

We have reviewed in this paper results and algorithms for neighborhood graphs. Although we have
focused on the relative neighborhood graphs the other members of this rich family of graphs have
been discussed as well.

Many interesting questions remain open. Among them there is a problem of tight bounds for
the number of edges of the RNG in R3. The best established upper bound is superlinear. On the
other hand only a trivial linear lower bound is known. In this context it would be interesting to
develop optimal or output sensitive algorithms for the 3-dimensional RNG as well as the GG. Also,
three dimensional 3-skeletons deserve more research. Another area which needs further study is the
question of recognition of proximity graphs, i.e., given a class of proximity graphs and a graph G
determine if G belongs to this class. The known results concern the Delaunay triangulation [AB85]
and f-factors of point sets in the plane [ERW89].

In view of the widespread applications of neighborhood graphs to computational morphology,
geographical analysis, and pattern analysis the design of robust algorithms is a particularly im-
portant task. In particular, obtaining numerically stable algorithms and implementations for the
neighborhood graphs is a challenging problem.
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