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Abstract

Let S and T be two finite sets of points on the real line with |S| + |T | = n and
|S| > |T |. We consider two distance measures between S and T that have applications
in music information retrieval and computational biology: the surjection distance and
the link distance. The former is called the restriction scaffold assignment problem in
computational biology, and assigns each point of S to a point of T such that the sum of
all the assignment costs is minimized, with the constraint that every element of T must
be assigned at least one element of S. The cost of assigning an element si of S to an
element tj of T is |si − tj |, i.e., the distance between si and tj . In 2003 Ben-Dor, Karp,
Schwikowski and Shamir [2] published an O(n log n) time algorithm for this problem.
Here we provide a counter-example to their algorithm and present a new algorithm that
runs in O(n2) time, improving the best previous complexity of O(n3). The link distance
allows multiple assignments from both S to T and T to S. We give an O(n2) algorithm
for the link distance which also improves the best previous complexity of O(n3).

1 Introduction

In the context of measuring the similarity of musical rhythms with the goal of performing
a phylogenetic analysis of rhythms, Toussaint [9] proposed the use of the swap-distance.
A comparison of this distance measure with other rhythm dissimilarity measures shows it
to be superior in several respects [8]. In [9] and [8] the rhythms are represented as binary
sequences, where a ‘1’ denotes the onset of a note and a ‘0’ denotes a silence. Furthermore,
all the rhythms compared have the same length, n bits, with the same number k of 1’s
(or onsets). A swap operation on a string consists of interchanging two adjacent elements
in that string. The swap distance between two binary strings is defined as the minimum
number of swap operations needed to transform one string into the other. In this restricted
version of the problem, computing the swap-distance is very simple. For all i, the ith
‘1’ of one string must move to the position of the ith ‘1’ of the second string. Therefore
the number of swaps needed for one such operation is the difference between their indices
(which may be viewed as integer x-coordinates. The swap distance is the sum of all the k
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Figure 1: (a) A surjection between the two one dimensional sets S = {0, 2, 7, 12} and T

= {1, 4, 11}. (b) A minimal surjection between S and T .

differences, which may be trivially computed in O(n) time given the two binary sequences
as input. Note that actually performing the swaps may require Ω(n2) swaps.

In a more general setting, the two rhythms have different values of k, and the algorithm
described in the preceding will not work. In order to capture the attributes of the swap
distance measure on two binary strings S and T where S has more elements than T ,
Toussaint proposed the directed swap distance, which was first applied to the phylogenetic
analysis of Flamenco rhythms by Dı̀az-Báñez et al. [4]. The directed swap distance is
defined as the minimum number of swaps required to move every element of S to the index
of an element of T , with the restriction that every element of T must have at least one
element of S moved to its index.

The directed swap distance may be viewed as a version of the linear assignment prob-
lem [6], where the cost of an assignment between an element i of S and an element j of
T is the distance between i and j. Furthermore, we may consider the more general input
consisting of two sets of numbers on the real line rather than binary sequences. Here the
real numbers play the role of the indices of the 1’s in the binary sequence. In this setting,
if both sets have equal cardinalities, the simple algorithm described in the preceding for
binary sequences may still be used after sorting the sets, thus yielding an O(n log n) time
algorithm.

An alternate way of viewing the directed swap distance is as a surjection, ψ, between
two sets of elements S (the source) and T (the target) on the interval (0, X) where |S| ≥ |T |.
This mapping is bound by the constraint that each element of T must have at least one
element of S mapped to it. More formally the directed swap distance may be expressed as
a surjection as follows:

min
ψ

∑

s∈S

|s − ψ(s)|. (1)

Any surjection that satisfies the preceding equation we call a minimal surjection. Figure 1
depicts two different surjections between two sets of points on the line, one of which is
minimal. Note that all the points actually have zero y-coordinates; they are shown in this
way merely for the purpose of clarity.

In 1979 the philosopher Graham Oddie proposed surjections to measure the distance
between two theories expressed in a logical language [7]. In 1997 Eiter and Mannila extended
this idea by expressing theories as models, and thus as points in a metric space [5]. This gave
them a new distance measure in a metric space which they called the surjection distance.
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The surjection distance between two sets S and T is defined as follows:

min
ψ

∑

s∈S

δ(s, ψ(s)), (2)

where δ is a distance metric, and ψ is a surjection between S and T . They also proposed an
algorithm for computing the surjection distance in O(n3) time, where n = |S|, by reducing
the problem to finding a minimum-weight perfect matching in an appropriate graph.

In 2003, Ben-Dor et al. [2], in the context of the shotgun sequencing problem in com-
putational biology, introduced a modified assignment problem similar to the directed swap
problem where the points are real numbers on the line rather than bits in a binary string:
the restriction scaffold assignment problem. They also presented an O(n log n) algorithm
to compute this assignment problem. Their result relies heavily on a result of Karp and
Li [6] which provides a linear time algorithm (after sorting) for computing the one-to-one

assignment problem in the special case where all the points lie on a line. In the one-to-one
assignment problem between S and T some elements of S remain unassigned.

In this note we give a counter-example to the algorithm of Ben-Dor et al., [2] for com-
puting the restriction scaffold assignment problem, and show that the problem may be
solved in O(n2) time.

2 The Algorithm of Eiter and Mannila

Since our O(n2) algorithm is inspired by, and based on, some results of Eiter and Mannila [5],
we describe in this section their main results for the sake of clarity and completion. The
proofs of these results may be found in [5]. Their algorithm is based on a reduction to
finding a minimum weight perfect matching in a suitable bipartite graph. The reduction
makes use of the following observation.

Lemma 1 Let ψ be a minimal surjection from S to T . Then for any si 6= sj if ψ(si) =
ψ(sj) the distance from si to ψ(si) is not more than the distance from si to any other

element of T.

Taking advantage of this result their algorithm creates k = |S| − |T | auxiliary vertices.
These vertices serve as dummy nodes, for which the distance to any s ∈ S is made equal to
that of the shortest distance from s to any element of T . This allows the graph to effectively
simulate the situation where two or more vertices are mapped to the same element of T .

The construction is carried out as follows. For two sets, S and T in a metric space,
create a complete bipartite weighted graph G = (X ∪ Y, E, w). For each si ∈ S construct
a vertex xi ∈ X. For each tj ∈ T create a vertex uj ∈ U . Finally, for k = |S| − |T |, create
a set of nodes V = {v1, ...., vk}, and let Y = (U ∪ V ). The weight function w is defined as
follows:

w(e) =

{

e = (xi, uj), δ(si, tj)
e = (xi, vj), mint∈T δ(si, t)

(3)

where si, tj are the set elements corresponding to the vertices xi, uj , respectively.
Figure 2 illustrates this construction with the sets S = {0, 2, 7, 12} and T = {1, 4, 11}.

The bold lines represent the minimum perfect bipartite matching, and correspond to the
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Figure 2: The bipartite graph created from S = {0, 2, 7, 12}, T = {1, 4, 11}. The bold
lines represent the minimum perfect bipartite matching, which has a cost of 6.
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Figure 3: (a) The assignment returned by the algorithm in [2]. (b) A minimal assignment.

minimal surjection depicted in Figure 1 (b). Let w(M) denote the minimum-weight perfect
matching of the resulting graph, and let c(ψ) denote the cost of the minimum surjection
distance between S and T . Eiter and Mannila also prove the following theorem.

Theorem 2 c(ψ) = w(M).

Letting n equal to |S|, Eiter and Mannila note that this reduction yields an O(n3) time
algorithm since the construction takes O(n2) time and their matching algorithm of choice
takes O(n3) time for a complete graph [3].

3 A Counter-Example to the Algorithm of Ben-Dor et al.

Ben-Dor et al. [2] presented an O(n log n) time algorithm for computing the restriction
scaffold assignment problem. In this section we describe their algorithm and exhibit an
example on which the algorithm does not yield the claimed optimal solution.

The key idea in their algorithm is to split the problem into two parts. First, the minimal
one-to-one assignment, F , between S and T is found, leaving out a set E ⊂ S. Then each
element of E is mapped to its nearest neighbor in S. The attractive feature of this procedure
is that it runs in linear time provided that it uses the Karp-Li algorithm to solve the first
part of the problem (the one-to-one assignment) on points that are already sorted.

A simple counter-example to this algorithm follows. Consider the two sets S = {0, 2, 7, 12}
and T = {1, 4, 11} shown in Figure 3. The minimum one-to-one assignment function, F , is

F (0) = 1
F (2) = 4
F (12) = 11

(4)
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which has a total cost of 4. Adding in the distance between 7 and its nearest neighbor
in T , 4, gives a total cost of 4 + 3 = 7. However, this is not a minimum-cost surjective
assignment. We have already seen a solution for these two sets in Section 2, where, using
the algorithm of Eiter and Mannila, we were able to find a surjection ψ between S and T

with values,
ψ(0) = 1
ψ(2) = 1
ψ(7) = 4
ψ(12) = 11

(5)

which has a total cost of 6, thus providing a counter-example to the algorithm. Figure 3
illustrates this counter-example.

4 The New O(n2) Algorithm

In this section we propose a new O(n2) time algorithm for computing the the restriction
scaffold assignment problem (as well as the directed swap distance). The algorithm is
based on a reduction to the problem of computing the single source shortest path problem
in a weighted directed acyclic graph. The construction is inspired by the graph-theoretic
approach of Eiter and Mannila, and relies heavily on the following lemma, sometimes called
the quadrangle inequality [1].

Lemma 3 Let S and T be sets of points on the line. Also, let a distance function δ(s, t) =
|s − t|. Then for a, b ∈ S where a < b, and c, d ∈ T where c < d,

δ(a, c) + δ(b, d) ≤ δ(a, d) + δ(b, c) (6)

Proof:

Three cases arise as pictured in Figure 4.
Case 1 : a and b are both less than c or, symmetrically, greater than d

Let x = |a − b|, y = |b − c| and z = |c − d|. Then we have δ(a, c) + δ(b, d) =
x + 2y + z = δ(a, d) + δ(b, c).

Case 2 : Either a or b, but not both, are in between c and d

Let x = |a − c|, y = |c − b| and z = |b − d|. Then, δ(a, c) + δ(b, d) = x + z ≤
x + 2y + z = δ(a, d) + δ(b, c).

Case 3 : Both a and b are in between c and d

Let x = |c− a|, y = |a− b| and z = |b− d|. Then, δ(a, c) + δ(b, d) = x + z ≤
x + 2y + z = δ(a, d) + δ(b, c)

We relate this lemma to the directed swap distance with the following corollary.

Corollary 4 Let S and T be sets of points on the line. Then there exists a minimal

surjection ψ∗ from S to T such that for all si < sj, ψ∗(si) ≤ ψ∗(sj).
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Figure 4: Illustration of Lemma 3. The dashed lines represent the smaller distance.

Proof: Let ψ be a minimal surjection function that does not satisfy the lemma. Then
there must exist some si < sj where ψ(sj) < ψ(si). Let ψ(sj) = tk and ψ(si) = tl. Consider
a new function, ψ∗, which differs from ψ only by having ψ∗(si) = tk and ψ∗(sj) = tl. By
the quadrangle inequality lemma we have that

∑

s∈S |s − ψ∗(s)| ≤
∑

s∈S |s − ψ(s)|, thus
proving our hypothesis.

The first thing to note is that since all elements of S and T lie on a line, Corollary 4
implies that no crossings can occur in an optimal swap. Therefore, we know that the first
element of S must be mapped to the first element of T . Furthermore, also by Corollary 4,
given that si is mapped to tj , we can predict that si+1 is optimally mapped to either tj
or tj+1. The algorithm builds a directed acyclic graph whose structure takes advantage of
these two observations.

Let S, T be sets of integers on the interval (0, X), where |S| ≥ |T |, and let si be the ith
element of S. We construct a weighted directed acyclic graph G = (V, E) in the following
way. For each pair i, j where 1 ≤ i ≤ |T | and i ≤ j ≤ (i + |S| − |T |), we create a vertex,
vi,j . From each vi,j we add an edge to vi,j+1 with weight |ti − sj+1|, and an edge to vi+1,j+1

with weight |ti+1 − sj+1|, provided vi,j+1 and vi+1,j+1 exist. Finally, we create a node
labeled ‘start’ and put one edge from ‘start’ to v1,1 with weight |s1 − t1|. An example of
this construction is shown in Figure 5. The bold lines represent the minimum-length path
through the graph, and correspond to the minimum surjection shown in Figure 1 (b).

It remains to show that the weight of the minimum-length path w(P ) returned from
‘start’ to v|T |,|S| is equal to the cost of the minimum surjection between S and T , c(ψ). We
do this by showing first that c(ψ) ≤ w(P ), and then that c(ψ) ≥ w(P ).

Lemma 5 c(ψ) ≤ w(P ).

Proof: From a minimum weight path P ∗ we create a surjection ψ in the following way.
For each vertex, vi,j that P ∗ passes through, let ψ(sj) = ti. We can verify that ψ is indeed
a surjection by noting two things. First, each sj is mapped to only one ti, since edges from
vi,j to vi+1,j do not exist in the construction. Second, every ti receives at least one sj , since
no path exists from vi,x to vi+2,y without first passing through some vi+1,z. This surjection
ψ has a cost equal to that of P ∗, since for j = 1 to |S|, |sj −ψ(sj)| = w(vx,j−1, vy,j). Hence,
c(ψ) ≤ w(P ).
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Figure 5: A directed acyclic graph created from S = {0, 2, 7, 12}, T = {1, 4, 11}. The
bold lines represent the shortest path through the graph, which has weight 6.

Lemma 6 c(ψ′) ≥ w(P ) :

Proof:From an optimal surjection ψ′ we can create a path P using the following method.
By Corollary 4, for j = 1 to |S| − 1, there are only two possibilities. When ψ(sj) = ti and
ψ(sj +1) = ti add the edge, (vi,j , vi,j+1) to P . Otherwise, ψ(sj) = ti and ψ(sj +1) = ti +1,
so we add the edge (vi,j , vi+1,j+1) to P. Finally we add the edge (‘start’,v1,1).

It follows that P is a path through the constructed graph from ‘start’ to v|S|+|T |. A
consequence of Lemma 4 is that ψ′(sj) = ti implies that ψ′(sj+1) = ti or ψ′(sj+1) = ti+1,
which means that the corresponding path P is connected in G. Also, notice that there
are exactly k = |S| − |T | integers, j, where ψ′(sj) = ti and ψ′(sj+1) = ti. Thus, after |S|
steps along P we must be at node v|S|,|S|−k = v|S|,|T |. From the definition of the weight
function it follows that P has a weight equal to that of ψ′. Hence, P is a valid path and
c(ψ′) ≥ w(P ).

Theorem 7 c(ψ) = w(P ).

Proof: The result is immediate from Lemmas 5 and 6.
As for the complexity of this method, first let |S| = n and |T | = m. Since in our

construction each vertex has at most two edges pointing to it, we have that |E| = O(|V |).
Also note that |V | = n ∗ (n − m). Therefore the construction takes O(|V | + |E|) = O(|V |)
time, and the single source shortest path algorithm for directed acyclic graphs also takes
O(|V | + |E|) = O(|V |) time [3]. Therefore the entire algorithm runs in O(|V |) time, which
is O(n2) in the worst case, thus improving on the previous best complexity of O(n3) for
this problem due to Eiter and Mannila [5].

5 The Link Distance

Eiter and Mannila also studied what they call the link distance.
Eiter and Mannila define a linking between two sets S and T as a relation L j S × T

where the following two statements hold.

1. For every si ∈ S, there exists a tj ∈ T such that (si, tj) ∈ L.
2. For every ti ∈ T , there exists a sj ∈ S such that (sj , ti) ∈ L.
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Figure 6: An example of (a) a minimal surjection and (b) a minimal linking on the same
set.

The link distance is the cost of a minimal linking subject to some distance measure, δ.
More formally, the link distance between two sets S and T is equal to:

min
L∈R

∑

(s,t)∈L

δ(s, t)

Figure 6 demonstrates a case where the link distance seems to capture the relationship
between two sets of points in a more natural way than the surjection distance.

5.1 The Link Distance Algorithm of Eiter and Mannila

Similar to their solution to finding the minimum surjection between two sets, Eiter and
Mannila’s solution to finding a minimal linking reduces the problem to finding a minimum-
weight matching in a bipartite graph. The reduction depends on the following two lemmas,
originally proved by Eiter and Mannila in [5].

Lemma 8 Let S and T be sets and L a minimal linking between them. For s 6= s′ if

(s, t) ∈ L, and (s′, t) ∈ L then the distance from s to t is less than the distance from s to

any other element of T .

Lemma 9 Let S and T be sets and L be a minimal linking between them, then, for any

relation (s, t) ∈ L, either s or t has degree 1.

Eiter and Mannila proceed by constructing a bipartite graph on which the matching is
performed. The key concept is again the creation of “dummy” nodes to handle the case
when an element, x, of either set is linked to an element of the other set which has degree
more than one, and hence, by Lemma 8 is x’s nearest neighbor in that set. From Lemma 9
we know that any such x must have degree one. Therefore we need only create one copy
for each element of S ∪ T with the weight of an edge between an element and its dummy
equal to the distance between that element and its nearest neighbor.

To this end, the bipartite graph consists of two complete graphs. One graph represts
the elements of S and T with weights according to the distances between the elements.
The other is a complete zero weight “dummy” graph. An element in the dummy graph is
connected to its corresponding element in the first graph with a weight equal to the distance
to that element’s nearest neighbor.
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Figure 7: A graph G′′ corresponding to S = {2,6,7,8}, T = {1,3,7}. The minimum weight
perfect matching is given in bold.

More formally, we construct such a bipartite graph G′′ as follows. For sets S and T

create a graph G = (A∪B, E, w) in the following manner. For each s ∈ S create an a ∈ A,
and for each t ∈ T create a b ∈ B. For each edge, e = (ai, bj), set w(e) = δ(si, tj). Next,
create a zero weight copy of the graph G′ = (A′ ∪ B′, E′, w′). From these two graphs we
construct a graph G′′ which is the union of G and G′ and contains additional edges from
ai to a′i and bj to b′j with weight equal to the minimum distance from si to an element of
T and from tj to an element of S, respectively. See Figure 7 for an example.

5.2 An Improved Algorithm for One-Dimensional Sets

While Eiter and Mannila’s algorithm works for point sets in general space, our main concern
is point sets in one dimension. In one dimension Lemma 3 also applies for the link distance.
This leads us to the following remark, whose proof is analogous to that of Corolary 4.

Corollary 10 Let S and T be sets of points on the line. Then there exists a minimal

linking L∗ from S to T such that for all si < sj, L∗(si) ≤ L∗(sj).

This observation implies that in an minimal linking if we know that (si, tj) ∈ L then
one of (si, tj+1), (si+1, tj), (si+1, tj+1) must also be in L. Using this information it is not
hard to reduce the problem, as before, to finding the shortest path through a weighted
directed acyclic graph. The construction of this graph differs from the previous directed
acyclic graph in that it is expanded to allow multiple linkings not only from elements of S

to elements of T , but also from elements of T to elements of S.
The correctness proofs are similar to those for the surjection distance. As for the

complexity of this method, let |S| = n and |T | = m. In the construction |V | = O(n ∗ m),
and since there are at most three edges per node, |E| = O(|V |). Thus the construction takes
O(|V |) = O(n∗m) time. The algorithm for finding the shortest path between two elements
in a directed acyclic graph takes time O(|V |+|E|) which in this case takes O(|V |) = O(n∗m)
time. Thus the total complexity of the method takes O(n ∗ m) = O(n2) time.
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