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respectively, must lie in a regular sleeve. Recall that in triangulating P’ we first obtained a weakly
simple polygon by inserting two copies of (x, y). Let xa andxb denote the two copies ofx on the
side ofva andvb, respectively. It follows that CH(Q | P) is GP(xa, xb | P’) and can be computed as
before.

In summary, we have shown:

Theorem 4.1:     Given two disjoint simple polygons P and Q of n edges each, whether they are
separable under translation can be determined in O(t(n)) time where t(n) is the time needed to tri-
angulate a polygon with O(n) edges.

If P and Q are separable under translation it means CH(P | Q) and CH(Q | P) are monotonic
with respect to some unoriented directionθ. Thus a motion for separation is immediate. Either P
or Q can be translated in either of the two oriented directions determined byθ + 90o and which of
these orientations is valid can be determined in O(n) time. Actually, once the relative convex hulls
are available inall directions in which P and Q are separable under translation can be computed in
linear time. It suffices to know that thewedge of all possible directions is determined by the verti-
ces of P (and Q), that (1) are contained in CH(Q) (CH(P)), and (2) that are also vertices of CH(P |
Q) (CH(Q | P)). The details are omitted.

As a final note we remark that the new approach for solving thetranslation-separability
problem presented here can lead tooptimal algorithms if P and Q have additional structure that al-
lows triangulation of the required regions to be done in linear time. As an example we obtain the
following theorems by applying the previous results [37].

Theorem 4.2:    Given two disjoint monotone polygons P and Q of n edges each, all motions that
can take Q sufficiently far from P by a single translation can be determined in O(n) time.

Theorem 4.3:  Given two disjoint star-shaped polygons P and Q of n edges each, all motions that
can take Q sufficiently far from P by a single translation can be determined in O(n) time.

5.   Conclusion

In closing we mention some open problems. The convex hull of a simple polygon can be found in
linear time [34]. The relative convex hull seems very closely related to the standard convex hull
and two polygons do not seem that much worse than one. Does there exist a linear algorithm for
computing CH(P | Q) when P and Q are simple polygons? Two polygons may be interlocked under
a single translation but not if rotations are allowed. How fast can we determine if two polygons can
be separated with rotations? In three dimensions we may define CH(P | Q) for two polyhedra P and
Q as the minimum-area surface enclosing P and excluding Q. How fast can we compute CH(P |
Q)? Finally, there exists a family of problems that concern the “penetration” of the convex defi-
ciency of P (the union of the pockets) by Q. For example, in the design of drugs we encounter the
problem of finding a test molecule (modeled as a polyhedron) that will “fit” well “into” the defi-
ciency of a host molecule. Several possibilities exist for measuring the degree of “penetration.”
One such measure might be the fraction of CH(P) taken up by CH(P)∼ CH(P | Q), where∼ denotes
set difference. An open problem in both two and three dimensions is to determine for P and Q the
maximum penetration under translations and rotations of Q without allowing collisions.
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interior of Q. This region referred to as K’ j is not a simple polygon but contains a “hole.” The first
step is to convert K’ j into a weakly simple polygon P’ by adding two “copies” of a “connecting
bridge” xy between a vertex of Q and a vertex of Cab(P).

Definition: Given a pocket Kj of P properly containing polygon Q, a connecting bridge between
Q and Kj is a line segment (x, y) such that (a) (x, y) does not intersect any edge of Kj or Q except
at its endpoints, (b) int(x, y) lies in int(Kj) and in ext(Q), and (c) one endpoint of (x, y) is a vertex
of Q and the other endpoint is a vertex of Cab(P) other than a and b.

Lemma 4.2:     Given two polygons Rout and Rin, where Rin is properly contained in Rout, with n
and m vertices, respectively, a connecting bridge between Rin and Rout can be found in O(m + n)
time.

Proof: The proof is straightforward and the details are omitted.

Once a bridge (x, y) between Q and Cab(P) has been found, P’ can be triangulated and its dual
tree T obtained. Three vertices of T play a singular role here. Let v be the node of T associated with
the triangle having (a, b) as one of its edges. Let va and vb be the nodes of T associated with the
two triangles that share the connecting bridge (x, y). If Cab(P) is traversed in order starting at a,
then an ordering of the triangles is induced. Of the two triangles sharing the connecting bridge, the
first to be encountered in this ordering corresponds to va, the second to vb. Although we cannot be
sure that CH(P | Q) must go through a specified point z, we do have the following lemma.

Lemma 4.3:    CH(P | Q) must intersect the connecting bridge (x, y).

Proof:  By construction, Kj is a simple polygon. By definition, CH(P | Q) in Kj, together with (a,
b), is a weakly simple polygon, and in fact can be viewed as the relative convex hull
CH[Q ∪ (a, b) | Cab(P)] and therefore must contain Q. It follows that any connecting bridge
must intersect CH(P | Q).      Q.E.D.

Lemma 4.3 now allows us to compute the geodesic path between a and b constrained to pass
through the connecting bridge xy in linear time using the algorithms of Chazelle [25] or Lee and
Preparata [23]. The algorithms in [25] and [23] compute the geodesic path between two points in
a sleeve in linear time. A sleeve is a polygon whose dual tree is a chain. In our problem (see Fig.
8), the shortest path from va to v in T yields sleeve Sa. Similarly, the shortest path from vb to v yields
sleeve Sb. Unfortunately, the union of Sa and Sb where GP(a, b| K’ j) must lie is not a simple poly-
gon. However, we can get around this obstacle by embedding Sa ∪ Sb onto a Riemann surface [33]
of two levels. We embed Sa onto level one and Sb onto level two with a ramp at the connecting
bridge xy leading from level one to level two thus obtaining a Riemann sleeve. To the algorithms
in [23] and [25] the Riemann sleeve so constructed looks just as if it were a regular sleeve. It fol-
lows that once P’ is triangulated CH(P | Q) can be computed in linear time.

All that remains is to compute CH(Q | P). In this case it is easily verified that if we choose a
connecting bridge (x, y) such that x is the vertex of Q furthest from the line through (a, b) then
CH(Q | P) must traverse x. Since the shortest path between va and vb in T is a chain it follows that
GP(a’, b’ | P’) where a’ and b’ are any two points lying in the triangles associated with va and vb,
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Figure 8:  Illustrating the algorithm when Q lies entirely in the
                 interior of one pocket of CH(P).
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Figure 7:  The convex hull of the union of two disjoint polygons has
                 either zero or two bridges.
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polygon. Therefore each line segment of S1 can intersect at most two line segments of S2 and the-
refore I = O(n). Thus this approach solves the separability problem in O(n log n) time [37]. Althou-
gh this is much better than O(n2) it is not an improvement over [19].

We are able to reduce the complexity to O(t(n)) by using an additional simple lemma. Refer
to Fig.7.

Definition: A bridge of CH(P ∪ Q) is an edge of CH(P ∪ Q) joining a vertex of P to a vertex
of Q. An endpoint of a bridge will be called a P-endpoint (resp. a Q-endpoint) if the endpoint is a
vertex of P (resp. Q).

In general, a bridge Bi will connect some vertex pu of P to some vertex qv of Q. If pu and qv
are the endpoints of Bi we highlight this fact by using the notation pui and qvi. If the discussion is
independent of the actual values of u and v we use the ��notation p•i and q•i to specify the endpoints
of bridge Bi.

Lemma 4.1: [30]. Given two nonintersecting simple polygons P, Q, the convex hull CH(P ∪ Q)
has either zero or two bridges.

Proof: Zero bridges result when one polygon lies in the interior of the convex hull of the other.
Consider two consecutive bridges Bi, Bi+1. If Bi has a pair of endpoints (p•i, q•i), then Bi+1
must have a pair (q•i+1, p•i+1). Therefore an odd number of bridges is impossible since we
would have a chain of one polygon containing vertices of the other polygon. Therefore we
can only have an even number of bridges. Now two can occur when P and Q are linearly sep-
arable. Assume we have an even number greater than two and consider two of these B1 and
B2. The P-endpoints of B1 and B2 are connected by two chains of P and the Q-endpoints by
two chains of Q. Therefore any other bridge Bi, i>2, implies P and Q intersect, which is a
contradiction.

We are now ready to complete the description of the algorithm. In case 1, then, we have the
CH(P ∪ Q) and two bridges Bi = (q•i, p•i) and Bj = (p•j, q•j) illustrated in Fig. 7. Note that the two
bridges and the chains C•j•i(P) and C•i•j(Q) define a simple polygon Z(P, Q) which “separates” P
and Q. The CH(P | Q) is the concatenation of the partial convex hull of P from p.i to p.j and the
geodesic path in Z(P, Q) from p•j to p•i. Similarly, the CH(Q | P) is the union of the partial hull of
Q from q•j to q•i and the geodesic path in Z(P, Q) from q•i to q•j. Since Z(P, Q) is simple, we can
triangulate it in O(n log log n) time with the algorithm of Tarjan and Van Wyk [32]. Note that all
computations other than triangulation are either linear or sublinear. The convex hulls of P and Q
can be computed in O(n) time with the algorithm of McCallum and Avis [34] and detecting wheth-
er or not they intersect can be done in O(log n) time with the algorithm of Chazelle and Dobkin
[35]. Finally, computing the convex hull of P ∪ Q ban be done in O(n) time using the “rotating
caliper” algorithm of Toussaint [36].

In Case 2, when Q lies entirely within one pocket of P, the situation is slightly more involved.
Let ab denote the pocket lid of some pocket Kj of P and refer to Fig. 8. The pocket Kj is itself a
simple polygon determined by line segment ab concatenated with chain Cba(P). In this case the re-
gion of intersect in which we need to compute geodesic paths is the set-difference of Kj and the
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relative hulls of P and Q respectively. If this were not the case then the relative hull of, say,
P, CH(P | Q) would intersect either a pocket of VH(P,θ) or a pocket of VH(Q,θ). In either
case it would imply that P and Q cannot be separated in direction θ, a contradiction. Now,
the relative convex hulls of VH(P,θ) and VH(Q,θ) form convex polygons except for the
chains lying inside pockets of the convex hulls of P and Q, respectively. Consider one such
pocket determined by vertices a and b and refer to Fig. 5. The region R, where GP(a, b | P)
must lie, is a monotonic polygon with respect to θ + 90o and from Lemma 3.2 it follows that
GP(a, b | P) is a monotonic chain with respect to θ + 90o. Since this is true for all such pockets
we have that CH(P | Q) and CH(Q | P) are both monotonic with respect to θ + 90o. Q.E.D.

4.  The Algorithm

Theorem 3.1 suggests the following algorithm for solving the separability problem stated in
the abstract. Compute the relative convex hulls of P and Q and determine whether they are monot-
onic polygons. With an appropriate data structure to handle weakly-simple polygons, the algorithm
of Preparata and Supowit [31] can determine whether the relative convex hulls are monotonic in
O(n) time. Thus the crucial part of the problem is computing the relative convex hulls.

Consider the polygons P and Q in Fig. 6 and the convex hull of P, CH(P). It is clear that if Q
did not intersect CH(P) then we would have CH(P | Q) = CH(P). This observation suggests an ap-
proach to computing CH(P | Q) by first determining CH(P) and subsequently patching up CH(P)
at those pockets where Q intersects CH(P) to obtain CH(P | Q). All we need to do is compute the
shortest path in each pocket of CH(P) from the endpoints of the pocket lids (such as (a,b) and (c,d)
in Fig. 6) such that the shortest paths separate P from Q. However, it is not clear how to patch up
all the pockets with a total complexity less than O(n log n). If for each pocket (such as the one de-
termined by cd in Fig.6) we had a list of all the boundary points of Q intersected by line segment
cd and, furthermore, if these intersection points were sorted along cd, then O(t(n)) time would suf-
fice to compute CH(P | Q). A straightforward scan of these intersection points would isolate a sim-
ple polygon, call it R, inside the pocket of cd in which the geodesic path from c to d is guaranteed
to lie. This scan has a complexity linear in k1, the number of vertices of Q contained in the pocket
of cd. The region R can then be triangulated in time t(k1 + k2) where k2 is the number of vertices
of P contained in the pocket of cd. Finally, the geodesic path between c and d can be computed in
O(k1 + k2) time. Adding the time taken for all the pockets of P would lead to a complexity of
O(t(n)). Unfortunately, it is not clear how to obtain all the intersection points in sorted order effi-
ciently. Sorting Jordan sequences in linear time [28] does not appear to help. If for each pocket lid
P we apply Jordan sorting to Q this results in an overall complexity of O(n2).

One way to reduce this complexity is by using the line-segment intersection algorithm of
Mairson and Stolfi [29]. They have shown that given two sets of n line segments S1 and S2 such
that the elements in each set are pairwise disjoint (their interiors do not intersect), all the intersect-
ing pairs between S1 and S2 can be reported in O(n log n+I) time where I is the number of such
pairs. Furthermore, for each line segment their algorithm reports all the intersection points in sorted
order along the line segment. Now, in general, I can be O(n2) but in the problem considered here
we have an additional structure that can be exploited. In our problem S1 consists of the edges of Q
and S2 consists of the pocket lids of the pocket of CH(P). Furthermore, these lids form a convex
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Figure 6:  Illustrating one possible way to compute CH(P/Q).
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Figure 5:  Illustrating the proof of theorem 1.
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L(θ) in unoriented direction θ are ordered as the vertices in Cij(P). P is a monotonic polygon if
there exists a line L(θ) such that the boundary of P can be partitioned into two chains Cij(P) and
Cji(P) that are monotonic with respect to θ.

We can now state the main result.

Theorem 3.1: Two disjoint simple polygons P and Q are separable under translation if, and only
if, their relative convex hulls are monotonic polygons.

Before proving Theorem 3.1 we need a few lemmas.

Definition: Given a simple polygon P and an unoriented direction θ, the visibility hull of P in
direction θ, denoted by VH(P, θ), is the set obtained by taking the union of P with all line segments

(a, b) in direction θ such that a, b ∈ P. Note that VH(P, θ) is monotonic with respect θ + 90o. The
edges on the boundary of VH(P,θ) which are not edges of P specify a set of “pockets” of VH(P,θ).
See Fig.4 for an illustration of the visibility hull of P and its “pockets.”

Lemma 3.1: [17]. Two disjoint monotonic polygons P and Q are separable under translation.

Lemma 3.2:    Let P be a polygon monotonic in the unoriented direction θ and let a, b be any two
points in P. Then the geodesic path GP(a, b | P) is a polygonal chain monotonic with respect to θ.

Proof: Let GP(a, b | P) be nonmonotonic with respect to θ. Without loss of generally assume θ
to be parallel to the x axis and let a have smaller x coordinate than b. This implies that there
exists a pair of consecutive vertices of GP(a,b | P), say u, v, such that u occurs before v on a
traversal of GP(a, b | P) from a to b, and v has smaller x coordinate than u. But since all the
vertices of GP(a, b | P), other than a and b, coincide with vertices of P, it follows from the
Jordan Curve Theorem that the boundary of P contains a chain Cij(P) which is not monotonic
with respect to θ.      Q.E.D.

Lemma 3.3; [5].    Two disjoint simple polygons P and Q are separable under translation in unori-
ented direction θ if, and only if,

                                      int[VH(P,θ)] ∩ int[VH(Q,θ)] = ∅

We are now ready to prove Theorem 1.

Proof: (of Theorem 3.1.)   [if part] If CH(P | Q) and CH(Q | P) are monotonic, then it follows
from Lemma 3.1 that they can be separated under translation. Now, by definition CH(P | Q)
contains P and CH(Q | P) contains Q. Therefore, P and Q are separable under translation.

[only if part] We must show that if P and Q are separable then both relative hulls are monot-
onic. Assume therefore that P and Q are separable in unoriented direction θ. Compute the
visibility hulls VH(P,θ) and VH(Q,θ). From Lemma 3.3 it follows that the interiors of these
visibility hulls do not intersect. Now construct the relative convex hulls of the visibility hulls
CH[VH(P,θ)|VH(Q,θ)] and CH[VH(Q,θ) | VH(P,θ)]. These relative hulls must also be the
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Figure 4:  Illustrating the visibility hull of P in direction θ.
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Figure 3:  A case when the relative convex hull is a
weakly-simple polygon.
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Figure 2:  Illustrating the relative convex hull CH(P/Q).
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algorithm for computing GP(a, b | P). Both of these algorithms first triangulate P and then find the
shortest path in O(n) time. More recently, an algorithm due to ElGindy [26] computes GP(a, b | P)
without first triangulating P.

Definition: A polygonal circuit is a closed polygonal path without self-proper crossings. (This
is a slight generalization of the notion of a simple polygon to allow some vertices and edges to be
used more than once.) Thus it makes sense to speak of its interior and exterior [27]. Accordingly,
we also refer to this as a weakly-simple polygon.

Definition: The convex hull of P relative to Q, denoted by CH(P | Q) is the shortest polygonal
circuit (or geodesic circuit) which contains P and excludes Q; i.e., int(P) ⊆ int(CH(P | Q)) and
int(Q) ⊆ ext(CH(P | Q)). Figure 2 illustrates two polygons and CH(P | Q). Figure 3 illustrates a
case where the CH(P | Q) is not a simple polygon. We also refer to CH(P | Q) and CH(Q | P) as
relative convex hulls.

3.  Geodesic Circuits and Separability of Polygons

In this section we present the main result of this paper: we show that, given two nonintersect-
ing simple polygons P and Q, the translation separability problem can be reduced to computing the
relative convex hulls of P and Q. This result is expressed by Theorem 3.1 below. First we introduce
some more notation.

The sides of polygon P, called edges, are denoted by ej=(pj, pj+1) and are directed from pj to
pj+1 (indices are modulo n throughout). A chain Cij(P) = (ei, ei+1,..., ej-1) is a sequence of edges on
the boundary of P. Similarly, for Q we have fj = (qj, qj+1) and Cij(Q) = (fi, fi+1,..., fj-1). A chain Cij(P)
is monotonic with respect to direction θ if the projections of the vertices pi, pi+1,..., pj onto a line

Figure 1: Illustrating the geodesic path between two
points a and b in a simple polygon P.

a

b

GP(a, b | P)

P
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In this paper we present an efficient algorithm for the problem stated in the abstract. That is,
for a given pair of disjoint simple polygons P and Q each having n sides or vertices determine
whether Q can be moved by a single translation to a position sufficiently far from P without col-
liding with P and produce all such motions if they exist. The problem was first considered by Tous-
saint and Sack [5] who showed that it could be solved in O(n2) time. Later this result was improved
to O(n log n) time [18], [19]. The approach used in [18] and [19] is via point-location in planar
subdivisions [20]. The region outside P but inside the convex hull of P is decomposed into a sub-
division such that when a vertex of Q falls in this region its directions of translation can be deter-
mined in constant time. However, finding the region in which the query vertex lies takes O(log n)
time. This is done for all vertices of Q. The entire procedure is repeated with the roles of P and Q
reversed. Finally, the movability of the polygons is determined from the movability of the vertices.

A more difficult problem is that of determining whether Q can be moved by a sequence of
translations to a position sufficiently far from P without colliding with P, and produce such a mo-
tion if it exists. Pollack et al. [21] present an algorithm for solving this problem in time
O(n2 α(n2)log2n) where α(k) is the extremely slowly growing inverse Ackermann’s function.
Since in the worst case Ω(n2) translations may be necessary to separate Q from P, their algorithm
is close to optimal.

In this paper we give an algorithm for solving the single-translation problem in time O(t(n))
where t(n) is the time needed to triangulate an n-sided polygon. Since Tarjan and Van Wyk [32]
have recently shown that t(n) = O(n log log n) this represents an improvement over the previous
best algorithm which required O(n log n) time even after triangulation [19].

2.   Geodesic Paths and Relative Convex Hulls

Let P = (p1, p2,..., pn) and Q = (q1, q2,..., qn) be two simple polygons in the plane with non-
intersecting interiors. Clearly, the cardinalities of P and Q need not be equal but this assumption
simplifies notation. We assume that the polygons are given in standard form, i.e., their vertices,
specified in terms of cartesian coordinates, are listed in clockwise order, i.e., the interior always
lies to the right of each edge as the polygon is traversed and no three consecutive vertices are col-
linear. We say that P and Q are separable under translation (or more succinctly separable) if there
exists a direction θ such that Q can be translated in direction θ an arbitrary distance without col-
liding with P. By a direction we mean an equivalence class of oriented parallel lines. In some of
the concepts to be defined later we use the notion of direction to mean simply an equivalence class
of parallel lines. When this is the case we explicitly use the term unoriented direction. Two poly-
gons P and Q collide if at some instant in time, during the motion, their interiors intersect, i.e.,
int(P) ∩ int(Q) ≠ the null set.

Given a polygon P and two points a, b ∈ P, the shortest path (or geodesic path) between a
and b is a polygonal path connecting a and b which lies entirely in P such that the sum of its eu-
clidean edge-lengths is a minimum over all other internal paths. We denote it by GP(a, b | P) where
the direction is from a to b (see Fig. 1). Geodesic paths find application in many areas such as im-
age processing [22], operations research [23], visibility problems in graphics [24], and robotics.
Recently, Chazelle [25] and Lee and Preparata [23] independently discovered the same O(n log n)
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ABSTRACT
Let P and Q be two disjoint simple polygons having n sides each. We present an al-
gorithm which determines whether Q can be moved by a single translation to a posi-
tion sufficiently far from P, and which produces all such motions if they exist. The al-
gorithm runs in time O(t(n)) where t(n) is the time needed to triangulate an n-sided
polygon. Since Tarjan and Van Wyk have recently shown that t(n) = O(n log log n)
this improves the previous best result for this problem which was O(n log n) even af-
ter triangulation.

1.  Introduction

Spurred by developments in spatial planning in robotics, computer graphics, and VLSI layout
considerable attention has been devoted recently to the problem of moving polygons in the plane
without collisions [1]-[11]. A typical problem in robotics is the FIND-PATH problem [12], where
a robot must determine if an object, modeled as a polygon in the plane, can be moved from a start-
ing position to a goal state without collisions occurring between the object being moved and the
obstacles. Much work has been done on the problem of hypothesizing channels through free space
when the obstacles are convex polygons[13]. For nonconvex objects the problem is bypassed by
considering the convex hulls of the objects to be the objects themselves. Thus a crucial aspect of
robotics for the geometric modeling needed for spatial reasoning and spatial planning is the repre-
sentation and recognition of the possible types of movement allowed by different nonconvex
shapes [14]. For a survey of movability problems in computational geometry see [15] and for a sur-
vey of the relation of computational geometry to robotics see [16].

A robotics problem more closely related to the problem considered in this paper is grasping
an object with a robot hand. Ignoring several factors such as forces and friction, and severing the
hand from the arm leads to some purely geometrical problems. In particular, if we consider only
two-dimensional space and model the “hand” and the “object” as two polygons then an interesting
geometrical problem consists of determining for a given “hand”-”object” configuration whether
the “hand” is truly grasping the “object,” i.e., whether the two polygons are interlocked. Several
results along these lines are surveyed in [15]. Interesting simplifications occur when the polygons
have additional structure [17].

*   This research was supported by NSERC Grant A9293, FCAR Grant EQ-1678, and a Killam Fellowship from the
Canada Council.


