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Abstract

Measuring the similarity between rhythms is a fundamental problem in computa-
tional music theory, with many applications such as music information retrieval and
copyright infringement resolution. A common way to represent a rhythm is as a binary
sequence where a zero denotes a rest (silence) and a one represents a beat or note onset.
This paper compares various measures of rhythm similarity including the Hamming dis-
tance, the Euclidean interval-vector distance, the interval-difference distance measure
of Coyle and Shmulevich, the swap distance, and the chronotonic distance measures
of Gustafson and Hofmann-Engl. Traditionally, rhythmic similarity measures are com-
pared according to how well rhythms may be recognized with them, how efficiently
they can be retrieved from a data base, or how well they model human perception and
cognition of rhythms. In contrast, here similarity measures are compared on the basis
of how much insight they provide about the structural inter-relationships that exist
within families of rhythms, when phylogenetic trees and graphs are computed from
the distance matrices determined by these similarity measures. For two collections of
rhythms, namely the 4/4 time and 12/8 time clave-bell time lines used in traditional
African and Afro-American music, the chronotonic and swap distances appear to be
superior to the other measures, and each has its own atractive features. The similarity
measures are also compared according to their computational complexity.

1 Introduction

Imagine that you are at a concert, after a stunning performance, clapping at a fast uniform
pace, much like a heart beat while jogging. Even better, try it out right now, but stop after
you reach sixteen claps. Then do it again but this time execute the first, fourth, seventh,
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Figure 1: Eight common ways of representing the clave Son rhythm.

eleventh and thirteenth claps loudly, and the remaining eleven claps softly. Your clapping
pattern could then be represented like this: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16], where
the claps shown in bold face are the ones you clap loudly. It may also be helpful to count
aloud the sixteen claps in groups as follows: [1 2 3 1 2 3 1 2 3 4 1 2 1 2 3 4], and to clap
loudly only on the one’s. If you repeat this pattern over and over, making the soft claps
completely inaudible, you will be clapping one of the most popular rhythms on the planet,
known mainly as the Clave Son from Cuba [41].

The Clave Son rhythm is usually notated for musicians using standard music notation
which affords many ways of expressing a rhythm. Four such examples are given in the
top four lines of Figure 1. The fourth line displays the rhythm with music notation using
the smallest convenient durations of notes and rests. Western music notation is not ideally
suited to represent African music [18], [4]. The fifth and sixth lines show two popular ways
of representing rhythms that avoid Western notation. The representation on line five is
called the Box Notation Method developed by Philip Harland at the University of California
in Los Angeles in 1962 and is also known as TUBS (Time Unit Box System). The TUBS
representation is popular among ethnomusicologists [18] and invaluable to percussionists not
familiar with Western notation. It is also convenient for experiments in the psychology of
rhythm perception, where a common variant of this method is simply to use one symbol
for the beat and another for the pause [17], as illustrated in line six. In physiology, where
the study of cardiac rhythms [6] is important, as well as in computer science the clave Son
would be written as the 16-bit binary sequence shown on line seven. Finally, line eight
depicts the interval length representation of the clave Son, where the numbers denote the
lengths (in shortest convenient units) of the intervals between consecutive beats (onsets).
The compactness and ease of use in text, of this numerical interval-length representation, are
two obvious advantages, but its iconic value is minimal.

2



Clave Son

Figure 2: The clave Son represented in 13th Century Arabic cyclic notation.

2 Geometric Representation of Rhythms

Because traditional Western music notation is not well suited for the visual representation
of rhythm, scholars of rhythm have sought to develop graphical geometrical representations
that afford not only easier manipulation and visualization of rhythms, but that are applicable
to domains other than music. However, geometric representations of rhythms have existed
for quite some time even before Western music notation was well developed. For example,
an Arabic book about rhythm written by Safi-al-Din in 1252 depicts rhythms using a circle
divided into “pie slices” [45]. The Son represented in this notation is depicted in Figure 2,
where the pie slices that correspond to beats are shown shaded, and an arrow indicates the
starting note and the direction of the flow of time.

In 1987 Kjell Gustafson, at the Phonetics Laboratory of the University of Oxford, pub-
lished an original method to represent a rhythm as a two-dimensional graph [21], [22]. His
idea (first proposed in 1983) is best explained with an example. Consider first the clave
Son pattern shown on line five of Figure 1. The interval lengths (3, 3, 4, 2, 4) between the
onsets of the beats are ordered along the x-axis as a one-dimensional pattern. Although this
representation is realistic in terms of the time at which beats occur, the relative durations
of the intervals are not easily observed. In a histogram approach to rhythm visualization the
intervals are plotted along the y-axis [22], resulting in the adjacent-interval-spectrum of the
rhythm. Figure 3 depicts the clave Son with such a representation. Here the relative lengths
of the intervals are clearly visible but the temporal information along the x-axis is lost. To
obtain a graphical representation that posesses the advantages of both of these methods,
Gustafson simply combines them. The result of this union is illustrated with the clave Son in
Figure 4. Each temporal element (interval) is now a box and both the x and y axes represent
the length of time of the interval. Gustafson refers to such a display as TEDAS (Temporal
Elements Displayed As Squares). A TEDAS representation of rhythm has other advantages
besides those mentioned in the preceeding. Some of these will be discussed in the section
on measuring similarity between rhythms. For additional advantages the reader is referred
to [22].

Unaware of the work of Gustafson [22], Hofmann-Engl [24] in 2002 rediscovered the idea of
representing rhythms as a two-dimensional display where both axes measure time. Whereas
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Figure 3: The adjacent-interval-spectrum of the clave Son.
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Figure 4: The TEDAS representation of the clave Son.

Gustafson was motivated by visualizability and technical considerations, Hofmann-Engl, on
the other hand, was concerned with predicting human perception and cognition of rhythmic
similarity. Althought the language used by Hofmann-Engl is quite different from that em-
ployed by Gustafson, their representations are equivalent. As in the preceeding, the idea is
illustrated here with the clave Son as an example.

First the rhythm is broken down into its smallest time units (16th notes and rests in this
case) as in line four of Figure 1. Hofmann-Engl calls these atomic beats. Then each atomic
beat is assigned a y-coordinate (height) equal to the length of the beat-to-beat interval in
which it falls, resulting in a pattern of sixteen points in the plane. Finally these points are
connected together in increasing x-coordinate to obtain an x-monotonic polygonal chain.
Hofmann-Engl calls such polygonal curves chronotonic chains. Figure 5 shows the clave Son
represented as a chronotonic chain.

A third geometric method of representing a rhythm is illustrated in Figure 6 where the
clave Son is depicted as a convex polygon. Like the chronotonic representations of Gustafson
and Hofmann-Engl, the polygon representation clearly shows the relative lengths of the onset
or beat intervals, and is realistic on the circular time scale. In fact this representation is even
more realistic than its chronotonic counterparts because rhythm timelines are cyclic, and all
the other representations discussed above, apart from the Arabic “pie-slice” representation,
have the beginning and end of the pattern located physically distant from each other, when
they actually coincide cyclically in time. This representation also yields a powerful visual-
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Figure 6: The clave Son represented as a convex polygon.

ization tool, since a variety of geometric properties of rhythms are immediately perceived
from the resulting polygons. For example, the dashed line connecting locations 3 and 11 in
Figure 6 indicates an axis of mirror symmetry for the clave Son. The polygon can also be
used to compute a variety of n-dimensional vectors of geometric features X = (x1, x2, ..., xn).
For example, focusing on the vertices of the Son polygon V = (v1, v2, v3, v4, v5) one could
take vi to be the internal angle of the ith vertex. On the other hand viewing the polygon
as a sequence of edges E = (e1, e2, e3, e4, e5) one could take ei to be the length of the ith
edge of the polygon. In addition, one could use a variety of global shape features of the
polygon such as the ratio of perimeter to area, or various moments of inertia [37]. Recently,
geometric features such as these have been used to obtain new classifications of rhythm time-
lines in African and Afro-American traditional music [41], [43]. Such classifications fall under
the more recent structural approach proposed by Jay Rahn [35], [34], and contrast sharply
with earlier statistical methods (for example, in 1966 Abraham Moles [29], classified rhythms
based on the entropy function of the histogram of relative frequencies of occurrences of their
inter-onset intervals).
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3 Measuring the Similarity of Rhythms

At the heart of any algorithm for comparing, recognizing or classifying rhythms, lies a measure
of the similarity between a pair of rhythms. The type of similarity measure chosen is in part
predetermined by the manner in which the rhythm is represented. Furthermore, the design of
a measure of similarity is guided by at least two fundamental ideas: what should be measured,
and how should it be measured.

There exists a wide variety of methods for measuring the similarity of two rhythms repre-
sented by strings of symbols [42]. Indeed the resulting approximate pattern matching problem
is a classical problem in pattern recognition and computer science in general [16]. Tradition-
ally similarity between two patterns is measured by a simple template matching operation.
More recently similarity has been measured with more powerful and complex functions such
as the earth mover’s distance [44], [11].

In this section we describe the five, easy to compute, popular and representative measures
of rhythm similarity (or dissimilarity) that will be compared in the following.

3.1 The Hamming distance

For binary sequences a natural measure of distance or dissimilarity is the Hamming dis-
tance [23] widely used in coding theory. The Hamming distance is simply the number of
places in the strings where elements do not match. When a measure of similarity is preferred
some researchers use the number of matches instead [28]. Hence it is one of the simplest
kinds of template matching [16]. Note that in this approach each rhythm is represented by a
vector X = (x1, x2, ..., xn) where the xi represent binary valued features of the rhythm. If a
note is played at time unit i then xi = 1 and otherwise xi = 0. Thus rhythms are represented
as points in a n-dimensional binary-valued vector space (usually called a hypercube). The
Hamming distance between two points X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) in this
space is given by:

dH(X, Y ) =
n
∑

i=1

|xi − yi| (1)

where |x| denotes the absolute value of x.
The Hamming distance is easily computed in O(n) time. However, it is not very appropri-

ate for our problem of rhythm similarity, when used with this particular type of representa-
tion, because although it measures the existence of a missmatch, it does not measure how far
the missmatch occurs. Furthermore, if a note or beat is moved a large distance the resulting
modified rhythm will sound more different than if the beat is moved a small distance.

3.2 The Euclidean interval vector distance

Some rhythm detection algorithms [31] and systems for machine recognition of music pat-
terns [12] use inter-onset intervals as the basic features for measuring similarity. These are the
intervals of time between consecutive note onsets in a rhythm. This approach and its variants
are more appropriate than the Hamming distance for measuring the similarity of rhythms.
Each rhythm may be represented by a vector of numbers that characterize these intervals.
More specifically a rhythm may be represented by X = (x1, x2, ..., xn), where xi is the number
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of vertices skipped by the ith polygon edge starting at vertex labelled 0. This is essentially
the same as the sequence of inter-onset time intervals since the time interval is the number
of vertices skipped plus one. The dissimilarity between two rhythms X = (x1, x2, ..., xn) and
Y = (y1, y2, ..., yn) may then be measured by the Euclidean distance (or some other metric)
between the two interval vectors X and Y , in this n-dimensional interval vector space, given
by:

dE(X, Y ) =

√

√

√

√

n
∑

i=1

(xi − yi)2 (2)

The interval vectors may be computed from the given binary sequences in O(n) time,
after which dE(X, Y ) can be computed in O(k) time, where k is the number of onsets, thus
leading to O(n) time overall.

3.3 The interval-difference vector distance

Coyle and Shmulevich [12] and Shmulevich et al. [36] represent a music pattern by what
they call a difference-of-rhythm vector. If T = (t1, t2, ..., tn) is a vector of inter-onset time
intervals for the notes of a rhythm then they define the difference-of-rhythm vector as X =
(x1, x2, ..., xn−1), where xi = ti+1/ti. In the context of cyclic rhythms considered here xn =
t1/tn, and the dimensionality of the difference-of-rhythm vector is thus n rather than n−1. We
shall use the shorter and more descriptive term interval-difference vector for the difference-
of-rhythm vector. Let X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) denote two such interval-
difference vectors. Shmulevich et al. [36] define the dissimilarity between X and Y by:

dID(X, Y ) =

(

n
∑

i=1

max(xi, yi)

min(xi, yi)

)

− n (3)

Clearly this distance measure is also easily computed in O(n) time.

3.4 The swap distance

To combat the inherent weakness of the Hamming distance, many variants and generalizations
of the Hamming distance have been proposed over the years. One early generalization is the
edit distance which allows for insertions and deletions of notes. Discussions of the application
of the edit-distance to the measurement of similarity in music can be found in Orpen and
Huron [33] and Mongeau and Sankoff [30]. A noteworthy more recent generalization is the
fuzzy Hamming distance [9], [10] which allows shifting of notes as well as insertions and
deletions. Using dynamic programming the these distances may be computed in O(n2) time.

This completely different approach to measuring the dissimilarity between two strings
computes the amount of “work” required to transform one string into the other. Such an ap-
proach is common in bioinformatics where the two strings to be compared are chain polymers
and the work is measured by the minimum number of basic operations required to transform
one molecule into the other. The type of basic operation used varies and usually models
some kind of mutation relevant to evolution (see [1], [2] and the references therein). Here
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we will use a simplified version of the fuzzy Hamming distance that is much more efficient to
compute.

The problem of comparing two binary strings of the same length with the same number of
one’s suggests an extremely simple edit operation called a swap. A swap is an interchange of a
one and a zero that are adjacent to each other in the binary string. Interchanging the position
of elements in strings of numbers is a fundamental operation in many sorting algorithms [14].
However, in the sorting literature a swap may interchange non-adjacent elements. When the
elements are required to be adjacent, the swap is called a mini-swap or primitive-swap [7],
[8]. Here we use the shorter term swap for the interchange of two adjacent elements. The
swap distance between two rhythms is the minimum number of swaps required to convert
one rhythm to the other. For example the rhythm [x . x . x x . x . x . x] can be converted
to the rhythm [x . x x . x x . x . x .] by a minimum of four swaps, namely interchanging
the third, fifth, sixth, and seventh beats with the corresponding rests preceeding them. The
swap distance may be viewed as a simplified version of the fuzzy Hamming distance [9], [10],
where only the shift operation is used, and the cost of the shift is equal to its length. Such a
measure of dissimilarity appears to be more appropriate than the Hamming distance between
the binary vectors or the Euclidean distance between the interval vectors, in the context of
rhythm similarity [41], [43]. The swap distance may also be viewed as a special case of the
more general earth mover’s distance (also called transportation distance) used by Typke et
al. [44] to measure melodic similarity. Given two sets of points called supply points and
demand points, each assigned a weight of material, the earth movers distance measures the
minimum amount of work (weight times distance) required to transport material from the
supply points to the demand points. No supply point can supply more weight than it has
and no demand point receives more weight than it needs. Typke et al. [44] solve this problem
using linear programming, a relatively costly computational method. The swap distance
is a one dimensional version of the earth mover’s distance with all weights equal to one.
Furthermore, in the case where both binary sequences have the same number of “one’s” (or
onsets), there is a one-to-one correspondence between the indices of the ordered onsets of
the sequences. For example, consider again the two sequences X = [x . x . x x . x . x . x]
and Y = [x . x x . x x . x . x .], each with seven onsets. The i-th onset of X must travel
the necessary distance to reach the position of the i-th onset of Y . For i = 1 this distance is
zero. For i = 3 the distance is one.

The swap distance may of course be computed by actually performing the swaps, but
this is inefficient. If X has one’s in the first n/2 positions and zero’s elsewhere, and if Y
has one’s in the last n/2 positions and zero’s elsewhere, then at least a quadratic number
of swaps would be required. On the other hand, if we compare the distances instead, a
much more efficient algorithm results. First scan the binary sequence and store a vector
of the x-coordinates at which the k onsets occur. For example, X and Y above yield the
vectors U = (u1, u2, ..., u7) = (1, 3, 5, 6, 8, 10, 12) and V = (v1, v2, ..., v7) = (1, 3, 4, 6, 7, 9, 11),
respectively. The difference between ui and vi is the number of swaps that must be performed
to bring the two onsets into alignment. Therefore, in general, the swap distance between two
onset-coordinate vectors U and V with k onsets is given by:

dSWAP (U, V ) =
k
∑

i=1

|ui − vi| (4)
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Computing U and V from X and Y is done trivially in O(n) time with a simple scan.
Therefore O(n) time suffices to compute dSWAP (U, V ), resulting in a large gain over using
linear or dynamic programming.

3.5 The chronotonic distance

Hofmann-Engl considers the chronotonic chain as a vector of atomic units rather than
as a piece-wise linear function. For example, the clave Son which has the interval set
(3,3,4,2,4) and corresponding chronotonic chain shown in Figure 5, yields the chronotonic
16-dimensional vector (3,3,3,3,3,3,4,4,4,4,2,2,4,4,4,4). To measure the similarity between two
rhythms Hofmann-Engl computes a weighted Euclidean distance between their corresponding
chronotonic vectors. Hofmann-Engl reports that experiments with human subjects supports
the hypothesis that this measure agrees with human perceptual and cognitive models of rhyth-
mic similarity [24]. However, viewing the chronotonic representation as a function, such as
the piece-wise linear function in Figure 4, opens the door to a large family of possible distance
functions with a long history in the fields of statistics and pattern recognition [39]. Given two
probability density functions f1(x) and f2(x), there are many measures of the distance (or
separation) between them. One of the most well known is the discrimination information.
The discrimination information between f1(x) and f2(x), also called the Kullback-Liebler
divergence between the distributions [5], is given by:

KL =
∫

f1(x) log
f1(x)

f2(x)
dx. (5)

This measure is closely related to the Kolmogorov variational distance [40] given by:

K =
∫

|f1(x) − f2(x)|dx. (6)

For surveys of these and other information measures, their properties, and their inter-
relationships the reader is referred to [38] and [27]. One can of course also compute the
Kolmogorov variational distance K with functions that are not necessarily probability den-
sity functions. In fact, Ó Maid́ın [32] proposed exactly such a measure of dissimilarity between
two melodies modelled as monotonic pitch-duration functions of time, as depicted in Fig. 7,
where the x-axis measures time duration and the y-axis measures the pitch of the notes.
In the context of information retrieval of melodies one may also be interested in computing
the minimum area between the two curves under translations of one curve in the x and y
directions while the second curve remains fixed. Aloupis et al. [3] show that for two melodies
(polygonal chains) consisting of n vertices this function can be computed in O(n2 log n) time.

Here we will use the measure K to compare rhythms using the chronotonic representation
proposed by Gustafson [22]. As an example, consider the rhythm [x . . x x . x . . x x . x . . .]
shown in Figure 8 in chronotonic notation. This is the rhythm timeline played on the tom-
tom drum of Not Fade Away by Buddy Holly and the Crickets [13]. The record was re-
leased in 1957 and became an instant hit [20]. It is a variant of the famous rhythm dubbed
the Bo Diddley beat popularised by Bo Diddley in his 1955 hit “Bo Diddley,” given by
[x . x x x . x . . . x . x . . .], and also characterized by the mnemonics “shave and a hair-
cut, two bits” as well as “bump bubby bump bump, bump bump”. If we superimpose the Not
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Figure 7: Two melodies as rectilinear pitch-duration functions of time.
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Figure 8: The rhythm in Not Fade Away in chronotonic notation.

Fade Away and Shiko timeline rhythms, as in Figure 9, then the measure K, or area-difference
(shown shaded) between the two curves, is equal to 12. A similar calculation superimposing
the Not Fade Away and clave Son timelines yields a value of K equal to 10, thus showing
that the Not Fade Away rhythm is closer to the Son than the Shiko. In this discrete setting
it is clear that K may be computed easily in O(n) time.

4 Comparing Rhythmic Similarity Measures

Traditionally, rhythmic similarity measures have been evaluated or compared with respect
to how well rhythms may be recognized [12], how efficiently they can be retrieved from a
data-base [19], or how well they model human perception and cognition of rhythms [24], [5].
In contrast, here we compare rhythmic similarity measures with respect to how much insight
they provide concerning the structural interelationships that exist within families of rhythms,
when phylogenetic trees and graphs are computed from the distance matrices determined by
these similarity measures.

The similarity measures discussed in the preceeding section are compared here using two
families of rhythms, namely, the fundamental binary and ternary timelines used in African
and Afro-American traditional music. In particular, the first family consists of the six five-
beat clave-bell patterns in 4/4 time [41], and the second family is comprised of the ten
seven-beat bell patterns in 12/8 time used in West African traditional music [43]. These
two families are depicted in the chronotonic notation of Gustafson in Figures 10 and 11,
respectively.
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Figure 9: The area difference K between Not Fade Away and Shiko.

4.1 Phylogenetic trees

Several techniques exist for generating phylogenetic trees from distance matrices [25]. Some
of these methods have the desirable property that they produce graphs that are not trees,
when the underlying proximity structure is inherently not tree-like. One notable example
is SplitsTree [15], [25]. Like the more traditional phylogenetic trees, SplitsTree computes a
plane graph embedding with the property that the distance in the drawing between any two
nodes reflects as closely as possible the true distance between the corresponding two rhythms
in the distance matrix. However, if the tree structure does not match the data perfectly
then new nodes in the graph may be introduced, as for example in Figure 12, with the goal
of obtaining a better fit. Such nodes may suggest implied “ancestral” rhythms from which
their “offspring” may be derived. In addition, edges may be split to form parallelograms, (or
more general zonotopes) such as in Figure 16. The relative sizes of these parallelograms are
proportional to an isolation index that indicates how significant the clustering relationships
inherent in the distance matrix are. SplitsTree also computes the splitability index, a measure
of the goodness-of-fit of the entire splits graph. This fit is obtained by dividing the sum of
all the approximate distances in the splits graph by the sum of all the original distances in
the distance matrix [15], [25].

5 Results

In this section we describe the structure of each SplitsTree obtained with each of the five
distance measures described in the preceeding, when applied to the two families of rhythms.
We begin with the binary (4/4 time) rhythms.

5.1 Binary rhythms

5.1.1 The Hamming distance

For the Hamming distance the splits graph shown in Figure 12 is a tree with a perfect fit
of 100%. The Son pattern lies at the center of the tree. Indeed, the Hamming distance
between the Son and each of the other rhythms is equal to two. The tree also contains
one ancestral node with Son, Soukous, Bossa-Nova, and Gahu as its offspring with each a
distance of one from the ancestral rhythm. This ancestral rhythm is the four-beat pattern
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Figure 10: The chronotonic representation of the 4/4 time clave patterns.

[x . . x . . x . . . x . . . . .]. Note that all four offspring contain this pattern, and they differ
only in the location of the last (fifth) beat that falls in positions 12, 13, 14, and 15, for the
Soukous, Son, Bossa-Nova, and Gahu rhythms, respectively. Finally, it is worth observing
that there is no unique pair of candidates that represents the two most different rhythms.

5.1.2 The Euclidean interval vector distance

For the Euclidean interval vector distance the splits graph shown in Figure 13 is tree-like
with a good fit of 82.3%. The center of the graph is the Son, but it does not have direct
paths to all other rhythms. The path from Son to Gahu is via the Bossa-Nova. Here there
are two rhythms, Gahu and Soukous, that are clearly the most dissimilar pair. Furthermore,
Gahu is the most distinct from all the others.

5.1.3 The interval-difference vector distance

For the interval-difference vector distance the splits graph shown in Figure 14 is almost a
chain with a rather poor fit of 58.3%. There is a tight cluster of rhythms comprised of
the Son, Rumba, and Shiko patterns. These are the three rhythms that contain identical
second bars (the last two beats) given by [. . x . x . . .]. Here also Gahu and Soukous are
the undisputed furthest pair of rhythms.
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Figure 11: The chronotonic representation of the 12/8 time bell patterns.

5.1.4 The swap distance

For the swap distance the splits graph shown in Figure 15 is a tree with a perfect fit of 100%,
and it contains no ancestral nodes. The Son is the center of the tree and minimizes both
the maximum as well as the sum of the swap distances to all the other rhythms. Gahu and
Soukous are again the unique most dissimilar pair. This splits graph is the simplest of all
the graphs.

5.1.5 The chronotonic distance

For the chronotonic distance the splits graph shown in Figure 16 is a tree-like graph with a
perfect fit of 100% This distance measure is the only one that exhibits a strong clustering in
this family of rhythms. In particular, the long parallelogram clearly separates Bossa-Nova
and Gahu from the rest, and invites one to search for a recognizable structure that explains
how these two rhythms differ from the others. An examination of their chronotonic functions
of time (see Figure 10) yields a clearly distinguishable discriminating feature. The Bossa-
Nova and Gahu functions have only one local maximum, whereas each of the four other
rhythms has two local maxima.
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Figure 12: The SplitsTree with the Hamming distance.

5.2 Ternary rhythms

5.2.1 The Hamming distance

For the Hamming distance the splits graph illustrated in Figure 17 is a complex network
with a weak fit of 70.3%. The main observation here is that there is one tightly knit group
of five rhythms (located in the upper right) consisting of Soli, Tambú, Bembé, Yoruba and
Asaadua, that are separated from the remaining five which lie scattered about. A discussion
of the properties of these five rhythms that sets them apart from the others is deferred to a
following section.

5.2.2 The Euclidean interval vector distance

For the Euclidean interval vector distance the splits graph illustrated in Figure 18 is tree-
like with a weak fit of 67.9%. Indeed, it is almost a star without any strong clustering
evidence. The two parallelograms weakly suggest that Soli, Tambú, and Bembé form one
cluster. Analysis of the chronotonic functions in Figure 11 reveals that these three rhythms
have a common feature absent in the other seven, namely, all three end with a short onset
interval.

5.2.3 The interval-difference vector distance

For the The interval-difference vector distance the splits graph illustrated in Figure 19 has
the lowest fit of all, a meager 28.3%. Yet its two parallelograms have the same structure as
those in Figure 18 with the leaves pruned off. It also suggests the same weak clustering of
the Soli, Tambú, and Bembé rhythms.
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Figure 13: The SplitsTree with the Euclidean interval vector distance.
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Figure 14: The SplitsTree with the interval-difference vector distance.

5.2.4 The swap distance

For the swap distance the splits graph illustrated in Figure 20 is almost a chain with a perfect
fit of 100%. There are no ancestral nodes, and the two most dissimilar rhythms, Soli and
Sorsonet, are strikingly visible. The parallelogram (a rhombus) indicates two weak clusters,
one comprised of Soli, Tambú, and Bembé, the same as in Figures 18 and 19, and the other
made up of Soli, Tambú, and Asaadua. Examination of the chronotonic functions reveals that
these three rhythms are the only ones that have both short inter-onset intervals present in the
second halfs of their time spans. Note that the subgraph consisting of the rhombus rhythms
(Tambú, Bembé, Yoruba and Asaadua) together with Soli are the same cluster aparent in the
upper right-hand portion of Figure 17.

5.2.5 The chronotonic distance

For the chronotonic distance the splits graph shown in Figure 21 exhibits a rich structure
with a perfect fit of 100%. There are two highly clustered groups. The first group (already
seen in Figures 20 and 17) consists of Soli, Asaadua, Tambú, Yoruba, and Bembé. The second
group is comprised of Tonada, Ashanti, Bembé-2, and Sorsonet. Furthermore, Bemba lies
half-way between the two groups.

An analysis of the chronotonic functions in Figure 11, with the above clustering in mind,
yields the following property that explains the clustering. Imagine that each function is a
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Figure 15: The SplitsTree with the swap distance.
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Figure 16: The SplitsTree with the chronotonic distance.

solid object with homogeneous mass equal to the area under the curve, balanced on a pivot
located at the midpoint of the time span. For example, Figure 22 illustrates the Soli object
balanced on the midpoint pivot. Note that this object has more mass on the left side of the
pivot and, by “gravity”, would thus rotate in a counter-clockwise direction. So would every
other member of group one. On the other hand, all the rhythms of group two have more
mass on the right side of the pivot and would rotate in a clockwise direction. Furthermore,
the Bemba rhythm (which falls half way between the two groups) is perfectly balanced on
the pivot.

The splits graph also has nine potential ancestral nodes. One of these is quite distin-
guished from the rest, not only because of its high degree, but because it is located in the
center of the entire collection, and is at a distance of two from all ten rhythms. For this
reason it is labelled the 2-center of the set. A reconstruction of this ancestral rhythm yields
the pattern [x . x . x . x . x . x .], i.e., a steady isochronous “heart-beat” consisting of six
beats per measure.
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Figure 17: The SplitsTree with the Hamming distance.

6 Concluding Remarks

Several desirable criteria spring to mind for comparing phylogenetic trees of families of
rhythms. Such criteria include (1) simplicity, (2) goodness of fit, (3) indication of clus-
tering, (4) generation of interesting “ancestral” rhythms, and (5) support of musicological
analyses.
Simplicity: The simplest splits graphs are obtained with the swap distance. For the binary
rhythms the splits graph is a tree, and for the ternary rhythms there is only one cycle.
Furthermore, neither graph has “ancestral” nodes.
Goodness of fit: The only distance measures that yield a 100% fit for both binary and
ternary rhythms are the swap and chronotonic distances. The Hamming distance also pro-
duced a 100% fit for the binary rhythms.
Clustering: The most impressive clustering is obtained with the chronotonic distance. For
the binary rhythms, Gahu and Bossa-Nova are clearly differentiated from the rest. For the
ternary rhythms the splits graph yields two well separated clusters.
Ancestral rhythm generation: The most noteworthy “ancestral” rhythms were produced
with the chronotonic distance for ternary rhythms and with the Hamming distance for the
binary rhythms.
Musicological analysis: According to Locke [26] Gahu is one of the most unusual binary
bell patterns, and he devotes a lengthy musicological analysis to make this point. His con-
clusions are well supported by the results obtained here with the Euclidean, swap, interval-
difference, and chronotonic distance functions.

In conclusion, a comparison of the significance of the role played by the five distance
measures according to each of the five criteria outlined in the preceeding, suggests that the
best overall rhythmic dissimilarity measure is the chronotonic distance, followed by the swap
distance in close second place.
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Fit=67.9%

Soli
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Ashanti
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Tonada

Bembé-2

Figure 18: The SplitsTree with the Euclidean interval-vector distance.

With respect to computational complexity, all five measures may be computed efficiently
in O(n) time, where n is the length of the binary representation in which the rhythm is given.
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Oostrum. Using transportation distances for measuring melodic similarity. Techni-
cal report uu-cs-2003-024, Computer Science Department, University of Utrecht, The
Netherlands, 2003.

[45] O. Wright. The Modal System of Arab and Persian Music AD 1250-1300. Oxford
University Press, Oxford, England, 1978.

23


