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Abstract

We study the problem of converting triangulated domains to quadrangula-
tions, under a variety of constraints. We obtain a variety of characterizations
for when a triangulation (of some structure such as a polygon, set of points,
line segments or planar subdivision) admits a quadrangulation without the use
of Steiner points, or with a bounded number of Steiner points. We also inves-
tigate the effect of demanding that the Steiner points be added in the interior
or exterior of a triangulated simple polygon and propose efficient algorithms
for accomplishing these tasks. For example, we give a linear-time method that
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quadrangulates a triangulated simple polygon with the minimum number of
outer Steiner points required for that triangulation. We show that this min-
imum can be at most [n/3], and that there exist polygons that require this
many such Steiner points. We also show that a triangulated simple n-gon may
be quadrangulated with at most |n/4]| Steiner points inside the polygon and
at most one outside. This algorithm also allows us to obtain, in linear time,
quadrangulations from general triangulated domains (such as triangulations of
polygons with holes, a set of points or line segments) with a bounded number
of Steiner points.

1 Introduction

A central problem in the manufacturing industry concerns the simulation of a wide
variety of processes, such as fluid flow in injection molding, by solving complicated
systems of partial differential equations [11]. To make this task easier, the method of
finite elements is usually employed [20]. In this approach a solid model of the object
under study (or its bounding surface) is divided up into small pieces determined by
data points sampled on the object’s surface.

In scattered bivariate data interpolation one is required to construct a bivariate
function (or surface) that fits data that has been collected at sampled points on the
plane [34]. One application of such a problem in the area of computer cartography
is the construction of approximate models of terrains from data consisting of the
elevation at a given finite set of sampled points [15]. To facilitate this process the
data points in the plane are used to divide it into small pieces. Each such piece then
gives rise to a surface patch and these surface patches are finally “stitched” together
to form the desired approximation to the surface.

One fundamental geometric problem in applications such as those mentioned
above is the construction of a mesh from the given set of data points. For sev-
eral decades the favored mesh used in such applications has been the triangular mesh
or triangulation of the data points [15]. In a triangular mesh the finite elements
are, as the name implies, triangles. As a result, triangulations of sets (such as sets
of points, line segments, polygons, etc.) have been studied in depth and much is
known about them [6]. However, in some situations for both the finite element and
the scattered data interpolation problems, it is preferable that the finite elements be
quadrangles (quadrilaterals) instead of triangles. For example, it has recently been
shown that quadrangulations have several advantages over triangulations for the prob-
lem of scattered data interpolation [26] and that improvements in elasticity analysis
can be obtained in finite element methods by using quadrangles rather than trian-
gles [2]. Unfortunately, not much is known about quadrangulations of point sets and
good quadrangular meshes are harder to generate than good triangular meshes [21].
In fact, if edges are allowed to be inserted only between the given data points (i.e.,



no extra points called Steiner points are permitted) then not all sets of points ad-
mit a quadrangulation. The characterization of quadrangulations of point sets and
the design of algorithms for their efficient computation using the minimum number
of Steiner points have only just begun [10]. In [10] it is shown that a set of points
admits a quadrangulation without Steiner points if and only if the number of points
on the convex hull is even.

In practical problems faced by engineers, the typical input consists of a set of
points lying in the interior of a polygon with holes [19, 22]. Since little is known
about computing quadrangulations, whereas triangulations have been well studied
for several decades [6], engineers have devoted some attention to the problem of con-
verting triangulations to quadrangulations [19, 22, 35]. These methods however are
heuristic, conceptually rather cumbersome and may require many Steiner points. For
example, Johnston et al. [22] integrate several heuristics into a system that auto-
matically converts a triangular mesh into a quadrangular mesh which runs in O(n?)
time and may add more than n Steiner points in the process, where n is the size of
the triangular mesh. No attempts appear to have been made to optimize either the
number of Steiner points or the complexity of the corresponding algorithms.

We remark that quadrangulations of polygons (without given data points inside)
have been investigated in the computational geometry literature for some time in
several different contexts. First we note that, as with points, arbitrary simple poly-
gons do not always admit a quadrangulation. In fact, it is not difficult to construct
polygons that require €2(n) Steiner points in order to complete a quadrangulation.
On the other hand orthogonal polygons (also isothetic or rectilinear) always admit a
quadrangulation without Steiner points. In fact, such polygons always admit quad-
rangulations in which every quadrangle is convex, a useful property not only in the
context of polygonal region illumination or guarding but also in finite element meth-
ods. For this reason, non-convex quadrangulations of orthogonal polygons are not
interesting and have not been studied. An existential proof that orthogonal polygons
always admit convex quadrangulations was first given by Kahn, Klawe and Kleit-
man [23]. A constructive proof with an O(n) time algorithm was first obtained by
Sack & Toussaint [32] for star-shaped polygons and subsequently generalized to run in
O(nlogn) time for arbitrary simple orthogonal polygons by Sack [31]. Edelsbrunner,
O’Rourke and Welzl [16], Lubiw [27] and Sack & Toussaint [33], among others, later
obtained additional constructive variants with similar time complexities. An orthog-
onal polygon with holes does not necessarily admit a convex quadrangulation and
Lubiw [27] showed that to determine if this is possible is NP-complete. For references
to additional special cases of quadrangulation problems, the reader is referred to [36].

In this paper we study the problem of converting general triangulated domains to
quadrangulations, under a variety of constraints. We focus on a careful study of quad-
rangulating simple polygons and show later that these techniques extend to general
triangulated domains such as polygons with holes and data points inside (the case of



particular interest to engineers). We demand that the quadrangles obtained be strict
quadrangles, i.e., that quadrangles not contain three collinear vertices, which would in
effect make them triangles. For example, in some mesh generation methods [17] and
in the recent efficient scattered data interpolation algorithms [26], the quadrangles
must be strict. Although strict quadrangulations may be obtained by adding Steiner
points on the boundary or diagonals, we obtain strict quadrangulations by consider-
ing only Steiner points added in the exterior or interior (and not on a diagonal) of the
polygon. For the simple case when no Steiner points are allowed, i.e., when it is asked
whether a quadrangulation can be obtained simply by removing a carefully selected
subset of edges of the triangulation, we point out the connection between quadrangu-
lations and perfect matchings of the dual graphs of the triangulations in question. We
obtain a variety of characterizations for when a triangulation (of some structure such
as a polygon, set of points, line segments or even a triangulated planar subdivision)
admits a quadrangulation without using Steiner points (or with a bounded number of
Steiner points). We also investigate the effect of demanding that the Steiner points
be added in the interior or exterior of a triangulated simple polygon. Furthermore,
we propose efficient algorithms for accomplishing these tasks.

In Section 2, we show that every n-gon may be quadrangulated in O(n) time with
at most |n/3] outer Steiner points, and that there exist polygons that require this
many outer Steiner points (we define outer Steiner points to be Steiner points that
are added outside the simple polygon). In the remainder of the paper, we describe
algorithms for converting triangulations to quadrangulations; we call these percolation
algorithms. In Section 3, we give a linear time algorithm for computing a maximum
matching in a tree that also has the additional property that all unmatched nodes
are leaves of the tree. This matching algorithm yields a method that quadrangulates
a triangulated simple polygon with the minimum number of outer Steiner points
required for that triangulation, this minimum being at most [n/3]. In Section 4,
we show that a triangulated simple polygon may be quadrangulated with at most
|n/4| Steiner points inside the polygon and at most one outside. We should point
out that it is not always possible to quadrangulate a simple polygon with Steiner
points only on the inside; for example, a pentagon. We conclude Section 4 with
a discussion of the applications of these percolation techniques to the problem of
obtaining quadrangulations from general triangulated domains, such as triangulated
sets of points, line segments or polygons with holes and data points inside. Finally,
we conclude the paper by presenting some open problems in Section 5.

2 Triangulated Polygons

In this section we restrict our attention to simple polygons. First we dispense with a
remark concerning our non-standard term “quadrangle” for the ubiquitous “quadri-



Figure 1: Example of simplest construction of a quadrangulation from a triangulated
polygon

lateral.” All polygons except (for some unknown reason) the polygon of four vertices,
are referred to by their number of vertices (angles) rather than their sides (latus). In
the words of Coxeter [14], “it is more usual to call this a quadrilateral, but to do so
1s unreasonable, as the word triangle refers to its vertices rather than its sides, and
so too does the word pentagon.” We assume that a polygon has n > 3 vertices. As
pointed out in the previous section, not all polygons admit a quadrangulation. In
such cases, it is necessary to add “Steiner points” (i.e. points that are not vertices
of the original polygon) in order to quadrangulate the polygon. In this and the fol-
lowing section, we address the question of obtaining a quadrangulation of a simple
polygon after it has been triangulated. This implies we are allowed to delete existing
diagonals, but no new diagonals between pairs of vertices are allowed to be inserted.
Also, we do not allow deletion of vertices of the original polygon.

Probably the simplest method to obtain a quadrangulation of a triangulated poly-
gon is to first insert a Steiner point in the interior of every edge and diagonal of the
triangulated polygon (note that this violates our definition of “allowed” Steiner points,
as described in the introduction). Then, for each triangle insert an extra Steiner point
anywhere in the interior of the triangle (as long as it does not make three collinear
Steiner points with any other pair of Steiner points in that triangle) and connect it to
the three other Steiner points of that triangle. Such a quadrangulation is illustrated
in Figure 1. This method has several advantages. For one, by choosing the interior
Steiner point carefully (i.e., in the interior of the triangle defined by the other three
Steiner points) a convex quadrangulation can be obtained [17]. The algorithm is triv-
ial to implement and it runs in linear time. Observe that this algorithm works for any
triangulated domain. The problem with this approach is that although it leads to
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Figure 2: Quadrangulation via Hamiltonian triangulation. (a) Original triangulated
polygon. (b) Geometrical dual tree inserted with each node of the tree connected to
the three vertices of its corresponding triangle. (c¢) Original diagonals removed. (d)
A resulting quadrangulation with a single triangle remaining, where an outer Steiner
point is inserted.

strict quadrangulations, it uses too many Steiner points when it is desirable to keep
this number small. In fact, this approach will always use 3n — 5 Steiner points in a
triangulated simple n-gon.

Another approach that uses about one third as many Steiner points is via the
Hamiltonian triangulation algorithm of Arkin et al. [3]. With a very different goal
in mind, namely, fast rendering in computer graphics, Arkin et al. proposed an
elegant method of obtaining what they call a Hamiltonian-cycle triangulation. Such
a triangulation has the property that its dual graph admits a Hamiltonian cycle. Bose
and Toussaint [10] recently proposed a method to obtain quadrangulations of point
sets via what they called serpentine triangulations. A triangulation is serpentine if
its dual graph admits a Hamiltonian path. By combining the ideas in [10] and [3] we
can obtain an algorithm for quadrangulating a triangulated simple polygon as follows
(refer to Figure 2). First a Hamiltonian-cycle triangulation is obtained with the
algorithm of Arkin et al. [3]. Consider a triangulated simple polygon as in Figure 2 (a).



First, a planar dual tree is inserted in the triangulated polygon. That this can always
be done in a triangulation or convex quadrangulation was first proved by Bern and
Gilbert [7]. Next, in each triangle the node in the dual tree corresponding to this
triangle is connected with edges to the three vertices of the triangle. Finally, the
original diagonals of the triangulated polygon are removed to yield the Hamiltonian
triangulation shown in Figure 2 (c¢). The Hamiltonian cycle contained in the dual
of the triangulation can be found by performing a tree traversal of the geometrical
dual tree; this allows us to visit every triangle in the Hamiltonian order. To obtain a
quadrangulation it suffices to follow the Hamiltonian order (starting at any triangle)
and delete every other diagonal. A quadrangulation obtained in this way is illustrated
in Figure 2 (d). Note that the last element may be a triangle in which case we
may add one additional outer Steiner point to convert this triangle to a quadrangle.
Although this algorithm is slightly more complicated than the previous one, it still
runs in O(n) time. Furthermore, at most one outer Steiner point is needed and the
number of internal Steiner points is always n — 2, i.e. at most n — 1 Steiner points
in all. Note that this method does not violate our conditions for converting the
triangulation to a quadrangulation because even though it discards all diagonals, it
does not insert new diagonals between pairs of vertices. Although the Hamiltonian
approach gives a marked improvement in the number of Steiner points used, we show
that by using coloring arguments for triangulated polygons [13, 18], we can further
reduce the number of Steiner points by a factor of three and this is optimal.

Before proceeding, we make our definition of Steiner points more precise. As
pointed out in the introduction, no Steiner points may be placed on the boundary of
the polygon or on diagonals. Therefore, we consider only two types of Steiner points:
inner and outer. Inner Steiner points lie in the strict interior of the polygon (but not
on a diagonal) and outer Steiner points in the strict exterior. Furthermore, for the
case when only outer Steiner points are allowed, the boundary of the original polygon
may be modified in the following way: Each outer Steiner point p is affiliated with
a single edge e of the original polygon, the edge e is deleted and two new edges are
created by connecting p to the two end-points of e.

The following theorem gives us tight bounds on the number of outer Steiner points
that are required to quadrangulate a triangulated polygon under the above conditions.

Theorem 2.1 |n/3]| outer Steiner points are always sufficient, and sometimes nec-
essary, to quadrangulate o triangulated simple polygon of n wvertices. Furthermore,
these Steiner points may be located in O(n) time.

Proof: Fisk [18] observed that since the vertices of a triangulated polygon can be
three-colored, every triangulation of an n-gon P can be partitioned into < |n/3]
fans by choosing the least-occurring color (a fan is a triangulation where one vertex,
called the fan center, is shared by all the triangles). Observe that there is always a



fan arms
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Figure 3: A fan in the decomposition always begins and ends with a polygon edge.

decomposition such that these fans start and end at edges of the polygon (this follows
from the three-coloring argument used by Fisk to partition the triangulated polygon
into fans). We refer to such edges of P as fan-arms (see Figure 3). It follows that
each fan-arm appears in only one fan.

Consider now a vertex v of P that is a fan center. Vertex v defines a sequence of
triangles in the triangulation. These triangles can be paired up to form quadrangles.
If the number of such triangles is odd, we will be left with one triangle, one of whose
edges is a fan-arm e. One of the endpoints of e is v; let the other be v'. We can
convert this to a quadrangle by adding a Steiner point p in a suitable location outside
e, deleting the edge e and connecting p to the two vertices v and v'.

Thus we need to add at most one Steiner point per fan. Since P can be partitioned
into < |n/3] fans, it follows that |n/3] outer Steiner points are always sufficient to
quadrangulate a triangulated simple polygon.

In order to see that |n/3]| outer Steiner points are sometimes necessary to quad-
rangulate a triangulated polygon, consider the triangulated polygon in Figure 4 (this
is similar to an example of a polygon that requires |n/3] guards). There are only
three ways in which fans may be chosen:

e If v; is chosen as one of the fan centers, then the other fan centers must be
the vertices vy, v7,v19, - . ., V9. These fans consist of single triangles and hence
they will each need one outer Steiner point for the quadrangulation.

e If v, vg,v9,...,v,_3,v, are chosen as the fan centers, each of the fans has an
odd number of triangles, and hence each of them will need one outer Steiner
point for the quadrangulation.

e If vy, vs,vs,...,v,_1 are chosen as the fan centers, we have a case similar to the
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Figure 4: Converting this triangulated polygon to a quadrangulation requires |n/3]
outer Steiner points.

above.

We see that in each of the above cases, |n/3| outer Steiner points are necessary
in order to obtain a quadrangulation from the triangulated polygon.

To see that these Steiner points can be located in O(n) time, consider the fol-
lowing. The triangulated polygon can be three-colored in linear time (Kooshesh and
Moret [25]). The edge on which a guard is placed gives us the fan-arm e outside which
we place the Steiner point. To find an appropriate placement of the Steiner point, we
may triangulate the simple polygon (or polygons) that lie outside P and within the
convex hull of P, in O(n) time using Chazelle’s algorithm [12]. The Steiner point for
e can be placed anywhere inside the triangle incident on e (and in the exterior of P).
If e is an edge of the convex hull, then the Steiner point can be located in the interior
of the region determined by the intersection of three half planes, one determined by
the edge e in question and that does not contain P, and the other two determined
by the edges of the convex hull adjacent to e and that contain P. It follows therefore
that all Steiner points can be located in O(n) time.

Theorem 2.1 actually implies a more fundamental result concerning the quad-
rangulation of simple polygons in general, i.e., without reference to “converting a
triangulated polygon.” First, given a simple polygon, it can always be triangulated
in O(n) time [12] before applying the conversion algorithm. Second, the polygon in
Figure 4 admits only one possible triangulation (as shown) and, since no internal
Steiner points are allowed, only these diagonals may be used in quadrangulating the
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polygon. We therefore have the following result.

Corollary 2.1 |n/3]| outer Steiner points are always sufficient, and sometimes nec-
essary, to quadrangulate any simple polygon of n vertices. Furthermore, these Steiner
points may be located in O(n) time.

3 Quadrangulations and Matchings

Consider a planar subdivision which has the property that every face is classified in
one of three ways: an outer face, an object face or a hole. The outer face is the only
unbounded face. Bounded faces that do not belong to the object are called holes. By
a triangulation, we mean a planar subdivision in which every object face is a triangle
and every edge of the subdivision belongs to at least one object face. From now on,
when we use the phrase “triangle of the triangulation”, we refer exclusively to an
object face of the triangulation. The dual graph of a triangulation is the graph in
which there is a node for every triangle of the triangulation, and an edge between two
nodes if the corresponding two triangles share a side.

Given a graph G = (V, E) (possibly weighted) with V' as the set of nodes and FE
as the set of edges, a matching M on G is a set of edges such that no two of them
have a common node. The mazimum cardinality matching problem is that of finding
a matching of maximum size. Similarly, the mazimum weight matching problem is
that of finding a matching of maximum weight. A perfect matching is a matching such
that every node in V' belongs to an edge of the matching. Note that this is slightly
different from some definitions of perfect matching found in the literature [1, 30],
where the definition allows one extra “free” i.e. unmatched node (when |V] is odd,
there will be at least one unmatched node in a maximum matching). Our definition
is more appropriate in the context of quadrangulations.

When we obtain a quadrangulation from a triangulation, we would like to add
as few Steiner points as possible with the constraint that diagonals between pairs of
vertices can only be deleted and not inserted. Consequently, the idea of pairing up
neighboring triangles in a triangulation to form quadrangles immediately implies that
our goal is to find the maximum possible number of such pairings. This corresponds
precisely to the maximum cardinality matching problem for the dual graph of the
triangulation.

If a triangulation 7" can be quadrangulated without Steiner points, it means that
we can eliminate some of the edges of the triangulation so that the resulting set of
object faces are quadrangles. In other words, all the quadrangles are formed by pairs
of triangles that share a side. In the dual graph, consider the set M of edges defined by
these pairs of triangles. The matching M is perfect (since T can be quadrangulated).
Conversely, let M be a perfect matching of the dual graph. Each edge in M gives us a
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quadrangle and, since M is perfect, there are no left-over triangles in the triangulation.
It follows that we can obtain a quadrangulation of 7" without using Steiner points.
Therefore, a triangulation admits a quadrangulation without Steiner points if and
only if the dual graph of the triangulation admits a perfect matching.

As we will see in the remainder of this paper, this relation between quadrangula-
tions and matchings gives us a powerful unified approach to handle the problem of
obtaining quadrangulations from triangulations while possibly adding Steiner points.
For example, let us assume we are given a triangulated domain such as a triangu-
lated polygon that contains holes. Applying any of the classical maximum matching
algorithms to the dual graph of the triangulated polygon maximizes the number of
quadrangles obtained while minimizing the number of left over un-paired triangles.
Thus computing a maximum matching answers the question of whether the triangu-
lation admits a quadrangulation without the use of Steiner points. Using the fastest
matching algorithm available due to Micali and Vazirani [28] this can be accomplished
in O(n'®) time. On the other hand, if the domain is a triangulated simple polygon
then the dual graph is a tree and maximum matchings can be computed faster by ex-
ploiting this added structure. Recently a general theory has been developed for solving
a variety of optimization problems on a class of graphs (called tree-decomposable) in
linear time using dynamic programming [8, 4]. This class of problems includes maxi-
mum matchings and the class of graphs includes trees. On the other hand a simpler
and more straight-forward linear-time algorithm for computing maximum matchings
of acyclic graphs was discovered by Klee and van den Driessche [24] twenty years ago,
although this work seems to be unknown in graph theory circles. We can use the
latter algorithm to determine if the triangulated polygon admits a quadrangulation
without Steiner points. However, if such is not the case, we are also still interested
in obtaining a quadrangulation with the minimum number of outer Steiner points.
Using the above algorithms, if we are lucky, the unpaired triangles will each have an
edge on the boundary of the polygon so that they can be converted to quadrangles
using outer Steiner points. We would then obtain a quadrangulation with the mini-
mum number of outer Steiner points possible for the given triangulation. We would
like to point out that it is not true in general that the number of unmatched nodes
in a maximum matching of the dual graph is equal to the number of Steiner points
required to quadrangulate the given triangulation. For example, by adding just one
inner Steiner point, we can obtain a quadrangulation of the triangulation with dual
K3 (whose maximum matching has two unmatched nodes).

In the rest of this section, we show that a maximum matching of the dual tree with
all unmatched nodes at the leaves can be computed in linear time. This immediately
yields algorithms to obtain a quadrangulation from any given triangulated polygon in
linear time with the minimum number of outer Steiner points (for that triangulation).
We will also give bounds on the number of Steiner points that may be necessary for
the quadrangulation. In addition, the methods used in these algorithms also give rise
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to efficient algorithms for obtaining quadrangulations by adding a bounded number
of Steiner points only inside the polygon. Before we proceed, we give some basic
definitions and properties of matchings that are relevant for our purpose (see for
example [1, 30]).

The edges in a matching M of an undirected graph G = (V, E) are called matching
edges and the edges not in M are called free. A node is matched if it is one of the
nodes of a matching edge and free (or unmatched) otherwise. If (u, v) is an edge
in M, then the node u is called the mate of v in the matching M. An alternating
path is a simple path in G whose edges are alternately matching and free. If both
the end nodes of an alternating path are free, then the path is called an augmenting
path. If M has an augmenting path, then M cannot be a maximum matching: this
is because we can obtain a matching of size [M| + 1 by interchanging the matching
and free edges along the path. Less obviously, the converse is also true and we have
the following:

Lemma 3.1 [5, 29] M is a mazimum matching of a graph G = (V, E) if and only if
G has no augmenting paths with respect to M.

We now give the description of simple linear-time algorithms, which we call the
percolation algorithms, that give us maximum matchings for binary trees. Note that
we focus on binary trees because the graphs that are of interest to us are either duals
of triangulations of polygons or the spanning trees of dual graphs. The nodes in
these dual graphs have degree at most 3. (Some of these techniques will generalize
to general trees, but we will not go into that here). Interestingly, the methods de-
scribed here provide us with an alternate proof of Theorem 2.1. More importantly,
the technique behind the percolation algorithms can be used to obtain quadrangu-
lations from general triangulated domains by adding Steiner points. For example,
we will be able to give upper bounds on the number of Steiner points for obtaining
quadrangulations from triangulated polygons with holes and triangulated sets of line
segments. It is useful to observe that the number of outer Steiner points given by the
percolation algorithms for triangulated simple polygons will, in general, be less than
the number of Steiner points given by the fan-decomposition approach described in
Theorem 2.1; this follows from the fact that the matching implied by that approach
is not, in general, a maximum matching.

Let T = (V, E) be a binary tree, and without loss of generality, assume that T
is rooted at a node of degree one (this makes no difference to our algorithm, but
makes the discussion simpler). Let h be the number of levels in 7" (with the root
being at level 1). For any node u in 7', we use level(u) to denote the level at which u
occurs. Consider now the following matching algorithm, which we call the percolate-
up algorithm. Let Vj, be the set of nodes at level h of T". Although all these nodes
are leaves, clearly not all leaves of T are in V},. Let v € V}, and let par(v) represent
v’s parent. We have the following cases:
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Figure 5: There cannot be an augmenting path in 7" from u to v.

Case 0: If par(v) is a node of degree one, then T consists of two nodes joined by
an edge. In this case, match v and par(v). Note that if par(v) is NIL (i.e. v
does not have a parent) then 7 consists of just a single node and we leave it
unmatched.

Case 1: par(v) is a node of degree 2. In this case, match v and par(v).

Case 2: par(v) is a node of degree 3 and v is the left child of par(v). In this case,
match v and par(v).

Case 3: par(v) is a node of degree 3 and v is the right child of par(v). In this case,
leave v unmatched.

For each v € V}, perform the above matching step and then prune 7 in the
following way: If Case 0 applies, delete v and par(v) from T (if par(v) is NIL, then
just v is deleted). If Case 1 applies, delete v and par(v) from 7. Note that for every
Case 2, there must be a Case 3. Hence if Case 2 applies, we delete v, par(v) and
v’s sibling (v and par(v) are matched, and v’s sibling remains unmatched). After the
matching and pruning steps have been carried out for all v € V},, we have a new tree
in which the number of levels is either h — 1 or h — 2. Let T™) denote this pruned
version of T'. Repeat the above matching and pruning step on all nodes at the lower-
most level of ™ and obtain a new pruned tree denoted by T®. Continue this step
with successively pruned trees 73, T and so on until we obtain 7®) where T®*) ig
the empty tree. Note that k < h.

The matching M found by the percolate-up algorithm for the tree 7" cannot have
any augmenting paths with respect to M and hence it follows from Lemma 3.1 that
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M is a maximum matching. To see this, consider any two unmatched nodes u and
v in T and refer to Figure 5. Without loss of generality, let level(u) > level(v). Note
that since level(u) > level(v), u cannot be the root. By our algorithm, u can be an
unmatched node only if it is the right child of a node of degree 3. In this case, par(u)
is matched to its left child (u’s sibling). Since level(u) > level(v) the path from u to
v must go through par(u) and par(par(u)). It follows therefore that there cannot be
a path of alternating free and matching edges from u to v. In other words, T cannot
have any augmenting paths.

Consider now the time complexity of the algorithm. Let V; denote the set of
vertices of 1" at level 7, where 1 < ¢ < h. Each V; can be found by using well-
known strategies (such as depth-first or breadth-first search) to traverse through the
tree. We assume that each set is maintained as a linked list and that each node in
T maintains a pointer to its location in one of the V;. These steps can be done in
O(n) time. Every time the percolate-up algorithm deletes a node from 7', that node
is also deleted from the V; to which it belongs. In addition, the degree of the parent
(if undeleted) of that node is also updated. Thus there is a constant amount of work
done per node during the matching and pruning steps of the algorithm. It follows
that the total run-time of percolate-up is O(n).

The percolate-up algorithm gives a maximum matching in which some of the
unmatched nodes are internal. However, we are interested in a maximum matching
in which the unmatched nodes are at the leaves. This is because, for simple polygons,
the quadrangulation can then be obtained immediately by adding a Steiner point in
constant time for each unmatched node (which corresponds to a boundary triangle
in the triangulation). We now show that the maximum matching obtained by the
percolate-up algorithm can be modified appropriately, while maintaining linear run-
time, to yield a maximum matching with all its unmatched nodes occurring at the
leaves.

Lemma 3.2 There exists a mazrimum matching for a tree T such that all its un-
matched nodes are leaves of T.

Proof: Let M be the maximum matching found by the percolate-up algorithm. Let
u be an unmatched interior node in 7" and refer to Figure 6. First, we show that
there is an alternating path from u to a leaf.

Note that u’s children must be matched nodes because otherwise we could match
u and an unmatched child to increase the size of M by one, which contradicts the fact
that M is a maximum matching. Let u; be the child of u; if u has two children, then
let u; be the left child of u. Let uy be the node matched with u;. The children of wu,
must be matched nodes because otherwise there exists an augmenting path from u to
an unmatched child, which contradicts the fact that M is a maximum matching. Let
us be the child of wus; us is the left child if u, has two children. Let u4 be the node
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Figure 6: Every internal unmatched node given by the percolate-up algorithm corre-
sponds to a matched leaf.

matched with u3. In this manner, continue to find the remaining nodes us, ug etc.
until we reach a leaf node. Call this leaf node [, (we use this notation because, as
we shall see shortly, each such leaf can be affiliated with only one unmatched node).
This leaf node must be a matched node, since otherwise we have found an augmenting
path. We use P, to denote this path from v to [,. In other words, P, is the following
pathinT: u — u; — Uy — U3 — Uy ... Upy—1 — Uy = l,. Observe that such
a path is uniquely defined for each internal unmatched node u. Furthermore, P, is an
alternating path, where (uq,us), (us, u4), (us, tg), - - -, (Um—1, ) are matching edges.

We now show that for every two unmatched internal nodes v and v, the paths
P, and P, are disjoint. If v and v are at the same level then P, and P, are disjoint
because they lie in the subtrees rooted at u and v, respectively, and these sub-trees
are disjoint. Therefore assume without loss of generality that level(u) < level(v). If
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v does not lie in the sub-tree rooted at u, then P, and P, are disjoint for the same
reason, mentioned above. If v lies in the right sub-tree (if it exists) of u, then P,
must lie entirely in the right sub-tree of u and hence P, and P, cannot overlap. If v
lies in the left sub-tree of u, then v cannot lie on the path P, since all nodes along
this path are matched nodes. This means that v must lie in a sub-tree coming from
one of the nodes u; along the path P,, such that the sub-tree is completely disjoint
from P,. In other words, v must lie in one of the sub-trees marked 1,,,,T,,, ..., T, _,
in Figure 6. It follows therefore that P, and P, cannot overlap. Thus each matched
leaf can be affiliated (in the manner described above) with at most one unmatched

internal node through a unique path.

The matching M can now be modified in the following manner so that we ob-
tain another maximum matching with all unmatched nodes at the leaves. As above,
let v be an internal node that is unmatched with respect to M and let P, be the
path from u to [,. We can exchange the matching and free edges along P, so that
(u,uq), (ug,us), (tg,us), - . ., (Um_2, Uy_1) are now matching edges and [, is an un-
matched node. Observe that the new matching M’ has the same size as M and hence
is also maximum. We can do this for every unmatched node u given by the matching
M. Since the paths P, are disjoint, the exchange of matching and free edges in one
path will not interfere with the exchange on any other path. It follows therefore that
M' is a maximum matching for 7', with the property that all unmatched nodes are
leaves of the tree.

The above proof suggests a modification of the percolate-up algorithm to give a
linear-time algorithm for finding a maximum matching with all its unmatched nodes
occurring at the leaves. We do this as follows. First find a maximum matching M for
the rooted tree T' by using the percolate-up algorithm. Then perform a tree-traversal
on T by using a pre-order tree-walk, where the root is examined and then recursively
its left sub-tree followed by the right sub-tree (if it exists). The idea is that if an
unmatched internal node u is encountered while walking through 7, it is percolated
down along the path P, by swapping matching and free edges one edge at a time.
At the end of the tree-walk, each such u will be matched and the leaf [, will be
unmatched.

Let M be the matching found by the percolate-up algorithm. If (u, v) is a matching
edge in M, then we say that mate(u) = v and mate(v) = wu. If a node u is
unmatched, then mate(u) = ¢. The tree traversal is adapted for our purposes, as
described below in the procedure MatchTree Walk. MatchTreeWalk will modify the
matching M to obtain the new matching M’ with all unmatched nodes at the leaves.
We call this new algorithm the percolate-up-and-down algorithm:

e Run the percolate-up algorithm on the tree T to find the matching M.

e Perform a tree-walk on 7" by calling MatchTreeWalk(T, root):
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MatchTreeWalk (7', u);

If (u # NIL) then
If (mate(u) = ¢ and u is an internal node) then
{mate(u) < v , where v is u’s child (left child, if u has two children)
v' < mate(v);
mate(v) < u;
mate(v’) <— ¢; Note that the unmatched node has been percolated down
by an edge along the path P,.
}

MatchTreeWalk(T', left child of u);
MatchTreeWalk(7', right child of u);

At the end of MatchTree Walk, we have the required matching M’ as given by the
function mate. We thus have the following result.

Theorem 3.1 The percolate-up-and-down algorithm gives a quadrangulation of a tri-
angulated simple n-gon by using the minimum number of outer Steiner points required
to quadrangulate the given triangulation. In the worst case, at most |n/3] outer
Steiner points are used. This algorithm runs in O(n) time.

Proof: Observe that this method gives the minimum number of outer Steiner points
that are required to quadrangulate the given triangulation, since percolate-up-and-
down finds a maximum matching for the dual tree.

To see that this algorithm uses at most |n/3] outer Steiner points, it is enough
to show that the number of unmatched nodes in the dual tree T' (as given by the
percolate-up algorithm) is at most [n/3]. This is because one Steiner point is
added for each unmatched node. Observe that the percolate-up algorithm gives
an unmatched node only when the rooted tree 7T, or one of the pruned versions
TO 7@ TG . T® has a node of degree three such that both its children are
leaves. In this case, the node and its left child are matched and the right child is left
unmatched, after which all three nodes are deleted. Thus, every time the percolate-
up algorithm gives an unmatched node, three nodes are pruned from the tree. If the
tree consists of a single node, then that node remains unmatched. Thus the number
of unmatched nodes in a tree 7" with ¢ nodes is at most [¢/3]. Since t = n — 2 for
the dual tree T, it follows that the number of unmatched nodes in the dual tree of a
triangulated simple n-gon is at most |n/3].

Finally, note that both the percolate-up algorithm as well as MatchTreeWalk take
O(n) time each. Therefore the entire algorithm takes O(n) time.
[

To conclude, we remind the reader that from Corollary 2.1, it follows that |n/3]
outer Steiner points is the best possible.
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4 Inner Steiner Points and Quadrangulating Gen-
eral Triangulated Domains

We now introduce a percolation algorithm that we call the () — percolation algorithm,
which converts a triangulated polygon to a quadrangulation while adding Steiner
points inside the polygon (we call these inner Steiner points), with at most one outer
Steiner point. Notice that we cannot always avoid adding one Steiner point outside,
i.e. there are polygons that cannot be quadrangulated with only inner Steiner points.
Since an n-gon has exactly n + 2s — 2 triangles in any triangulation with s inner
Steiner points, it follows immediately that inner Steiner points alone will not suffice
when n is odd (this fact is also used in [10]). Inner Steiner points are an important
consideration when the goal is to quadrangulate a simple polygon without modifying
the boundary of the polygon. Before we proceed, we define inner Steiner points more
precisely. As with outer Steiner points, we allow the deletion of diagonals from the
original triangulation and we do not allow any new diagonals to be added between
vertices of the input polygon. We only allow the addition of diagonals between an
inner Steiner point and vertices of the polygon.

The Q-percolation algorithm for quadrangulating a triangulated simple polygon
uses ideas similar to those in the percolate-up algorithm. First consider the following
simpler version of the algorithm, which gives us an upper bound of |n/2]| inner Steiner
points (and at most one outer Steiner point) for quadrangulating a triangulated simple
polygon. We will then refine this argument to tighten the bound. As before, let T’
be the dual tree of the triangulated simple polygon which we assume to be rooted at
a node of degree one and let h be the number of levels in 7' (with the root being at
level 1). As in the percolate-up algorithm, the Q-percolation algorithm starts at the
lower-most level of T and prunes the tree as it proceeds up the tree. Let V} be the
set of nodes at level h of T. Let v € V}, and let par(v) represent v’s parent. We have
the following cases, analogous to the cases in the percolate-up algorithm:

Case 0: If par(v) is a node of degree one, then v and par(v) (i-e. the triangles cor-
responding to these nodes) form a quadrangle. Remove these two nodes from
T. If par(v) is NIL, then we have simply a triangle which can be quadrangu-
lated with one outer Steiner point, which is possible because this is a boundary
triangle. Note that this is the only outer Steiner point added in this method.
Remove v from T

Case 1: If par(v) is a node of degree two, then v and par(v) form a quadrangle.
Remove these two nodes from 7.

Case 2: If par(v) (call this u) is a node of degree three, then let w be v’s sibling.
Then, as illustrated in Figure 7, we can add a Steiner point p in the triangle A,
corresponding to node u. Connect p to the three vertices of A,, thus dividing
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Steiner point p inside shaded triangle A,

Au1
Remove these two
nodes from the tree
snnnpfnnnnnnnnnnnEREnngy *
W

Figure 7: A Steiner point p may be added in the triangle A, corresponding to a node
of degree three in the dual tree, as shown on the right.

it into three smaller triangles A,;, Ay and A,s such that A,y is adjacent to
the triangle A, and A,3 is adjacent to the triangle A,,. Thus the triangles A,
and Ao can be paired up to form one quadrangle, as can the triangles A,, and
Ay3. Now in the tree T, delete nodes v and w. The node u now corresponds to
the triangle A,;.

After the above step is carried out for all nodes in V},, we continue with the set
of nodes in the lower-most level of the pruned version of 7. The step is repeated on
successively pruned trees until we are left with the empty tree. As in the percolate-
up algorithm, the set of nodes at every level of T' can be maintained as linked lists.
Observe that all Steiner points (except possibly one) are added in the interior of the
polygon. Furthermore, the number of Steiner points added is equal to the number
of triangles in the triangulation that correspond to nodes of degree three in the dual
tree T'. Since two nodes are deleted every time a Steiner point is added, it follows
that in the worst case this algorithm adds at most |n/2| inner Steiner points and at
most one outer Steiner point.

This method adds Steiner points conservatively. In other words, we can tighten
the upper bound by exploiting the structure of the tree 7. We will now show that
it is possible to delete at least four nodes of T every time an inner Steiner point is
added. In order to prove the tighter bound, we use the property that pentagons are
star-shaped from some point in its interior. Recall that a polygon is star-shaped if it
contains a point z such that for all y in the polygon, the closed line segment xy lies
in the polygon.

Theorem 4.1 The following @Q-percolation algorithm computes a quadrangulation of
a triangulated simple n-gon with at most |n/4] inner Steiner points and at most one
outer Steiner point in O(n) time.
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Figure 8: The three cases that arise in the Q-percolation algorithm.

Proof: We enumerate the following case analysis where V}, is as before.

Step 1: Do the following for each node v € Vj: If v is such that par(v) is NIL then we

have a single triangle that can be quadrangulated with one outer Steiner point,
which is possible because this is a boundary triangle. We delete v from 7. If
par(v) is a node of degree 1, then these two nodes correspond to a quadrangle
and we delete v and par(v) from 7. For all remaining nodes v € V}, such that
par(v) is a node of degree 2, delete v and par(v) from T (v and par(v) will form

a quadrangle) and update the degree of the parent of par(v).

Step 2: If V}, is not empty, do the following for each v € V},. Note that all remaining

v in V}, will be such that par(v) is a degree 3 node. Let w be the sibling of v.
Refer to Figure 8: the thick dotted line indicates the part of 7" that is deleted in
this step and the shaded triangle refers to the region where the polygon possibly
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continues. We assume that whenever nodes are deleted from 7', the degree of
an affected node is updated appropriately. One of the following cases applies:

Case 1: par(par(v)) is a node of degree 1 or 2 (see Figure 8 (a)). Let triangle
abc correspond to par(v). In this case we add a Steiner point p in the
interior of triangle abc such that it does not create three collinear points
with any vertices of the four triangles in question. Insert diagonals pa,
pb and pc forming three quadrangles: the union of triangles pab and A,,
the union of triangles pbc and A,,, and the union of triangles pac and the
triangle corresponding to par(par(v)). Delete v, w, par(v) and par(par(v))
from T'.

Case 2: par(par(v)) is a node of degree 3. Observe that because of Step 1 above,
the sibling of par(v) must be a node of degree 1 or of degree 3. Hence we
have the following two sub-cases:

Case 2.1: The sibling of par(v) is a node of degree 1 (see Figure 8 (b)).
The five triangles corresponding to the five nodes in question are con-
verted to three quadrangles and one triangle as follows. Let abcd
denote the quadrangle formed by the union of the two triangles abc
and acd corresponding, respectively, to par(v) and par(par(v)). Delete
diagonal ac. Quadrangle abed must be star-shaped (at least from any
point in the interior of segment ac). Pick a Steiner point p in the in-
terior of the kernel of abed such that it does not create three collinear
points with the vertices of the triangles in question including the par-
ent of par(par(v)). Insert diagonals from p to a, b, ¢ and d creating four
new triangles with p as apex and the sides of abcd as bases. Now delete
diagonals ab, bc and cd to form the three new quadrangles. Triangle
pad is now the new triangle corresponding to par(par(v)). Delete v,
w, par(v) and the sibling of par(v) from 7. The node par(par(v)) now
represents the smaller triangle obtained by adding the four diagonals.

Case 2.2: The sibling of par(v) is a node of degree 3 (see Figure 8 (c)).
The seven triangles corresponding to the seven nodes in question are
converted to four quadrangles and one triangle as follows. Let abcde
denote the pentagon formed by the union of the three triangles abc,
cde and ace corresponding, respectively, to par(v), the sibling of par(v),
and par(par(v)). Delete the diagonals ac and ce. The pentagon abcde
must be star-shaped from a non-zero-measure region in its interior.
Pick a Steiner point p in the interior of the kernel of pentagon abcde
such that it does not form three collinear points with any vertices of
the triangles in question including the parent of par(par(v)). Insert
diagonals from p to a, b, ¢, d and e creating five new triangles with p
as apex and the sides of pentagon abcde as bases. Now delete diagonals
ab, be, cd and de to form the four new quadrangles. Triangle pae is
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now the new triangle corresponding to par(par(v)) in 7. Now delete
the following nodes from 7": v, w, par(v), the sibling of par(v) and the
two (leaf) children of this node.

Repeat steps 1 and 2 on the pruned version of 7', and continue doing so until the
remaining tree is empty. Observe that every time the Q-percolation algorithm adds
an inner Steiner point, at least four nodes are removed from 7. At the very last step

before the tree becomes empty, one outer Steiner point may be added.
[

We can also solve several optimization versions of the quadrangulation problem
with maximum weighted matching algorithms. For example, if we assign a weight of
magnitude one (say) to all edges in the dual graph of the triangulation that correspond
to non-convex quadrangles, and we assign an appropriate higher weight to the edges
corresponding to convex quadrangles, then a maximum weighted matching algorithm
will give us the quadrangulation that maximizes the number of convex quadrangles, a
property that sometimes is desirable in practice [21]. Similarly, we can assign weights
that measure other properties of the quadrangles besides convexity, such as fatness,
and obtain corresponding optimal quadrangulations.

We close this section with a discussion of an important feature of the Q-percolation
algorithm, which is that it can be used to obtain quadrangulations from any trian-
gulated domain (that is, not necessarily triangulations of simple polygons). Let I" be
any triangulation, as in the definition given at the beginning of Section 3. We can
quadrangulate I by constructing a spanning tree of the dual graph of I, and then
applying the Q-percolation algorithm to the resulting tree (to each tree in a forest of
spanning trees, if the dual of T" is not a connected graph). Observe that the method
used in the percolate-up-and-down algorithm is not particularly useful for the span-
ning tree of the dual graph of I'. This is because the leaves of the spanning tree do
not necessarily correspond to boundary triangles and hence unmatched leaves cannot
be dealt with in the straightforward manner of the percolate-up-and-down algorithm.

The Q-percolation algorithm adds at most one Steiner point outside a triangle of
the triangulation. This triangle corresponds to the root node of the dual tree. Thus
in order to use the Q-percolation algorithm on I'; we just have to ensure that the root
node of the spanning tree of the dual graph of I' corresponds to a border triangle.
By a border triangle, we mean a triangle of the triangulation that has at least one
edge that belongs either to the outer face or to a hole. The number of Steiner points
required to quadrangulate these triangulations is at most |¢/4|, where ¢ is the number
of triangles in the triangulation I'.

It follows therefore that we can quadrangulate triangulated polygons with holes
as well as triangulated line segments. In particular, we have the following bounds for
a triangulated n-gon with A holes (since it can always be decomposed into exactly
n + 2h — 2 triangles):
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Theorem 4.2 A triangulated polygon P with n vertices and h holes can be quadran-
gulated in linear time with at most |(n+ 2h — 2)/4| Steiner points inside the polygon
and at most one outside.

Observe also that any triangulation of a set of n points can be converted into a
quadrangulation with at most |(2n — 2 — h)/4] Steiner points, where h is now the
number of points on the convex hull of the input set of points (the number of triangles
in the triangulation is exactly 2n—2—h). All Steiner points will lie within the convex
hull, except possibly one that lies outside.

Similarly, any triangulation of a set of n line segments can be converted into a
quadrangulation with at most |(4n — 2 — h)/4| Steiner points, since a triangulation
of n line segments is a triangulation of the 2n points that are vertices of the line
segments. Note that for line segments, the dual graph is defined in the usual way
except for the following: when a common boundary between two triangles is a line
segment from the input set, the dual will not contain an edge between the two nodes
corresponding to these two triangles. In practical problems of interest to engineers,
the triangulated domain is derived from a polygon with holes and data points in the
interior of the polygon. Our algorithms can also be used to efficiently convert these
triangulations into quadrangulations.

We would like to point out that it is actually possible to show that for any trian-
gulated domain, |h/3| outer Steiner points are always sufficient to quadrangulate the
triangulation, where h is the number of edges of the triangulation that are adjacent
to the outer face or a hole. This result can be derived from a basic theorem in graph
theory (Petersen’s theorem) that says that every 3-regular graph without cut edges
has a perfect matching. We will not go into the specifics here, but refer the interested
reader to [9] for details, where we present experimental results on computing quad-
rangulations of random sets of points by utilizing some of the ideas presented in this

paper.

5 Conclusions

We presented efficient algorithms for converting triangulated domains to quadrangu-
lations, while giving bounds on the number of Steiner points that might be required
to obtain the quadrangulations. We showed that, in linear time, a triangulated simple
n-gon can be quadrangulated with the least number of outer Steiner points required
for that triangulation. We showed that |n/3] outer Steiner points are sufficient, and
sometimes necessary, to quadrangulate a triangulated simple n-gon. We also showed
that |n/4] inner Steiner points (and at most one outer Steiner point) are sufficient
to quadrangulate a triangulated simple n-gon, and this can be done in linear time.
Moreover, this method can also be used to quadrangulate arbitrary triangulated do-
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mains.

Some open questions arise from these results. For instance, are |n/4| inner Steiner
points sometimes necessary to quadrangulate a simple n-gon? In other words, are
there simple n-gons that would necessarily require |n/4| Steiner points, where we
allow the Steiner points to be added only inside the polygon (with possibly one Steiner
point outside)? We do not know of any non-trivial lower bounds for this problem.
The least number of Steiner points required to quadrangulate a simple polygon, over
all triangulations, is also an open problem. In addition, it would be interesting to
look into the question of obtaining better bounds on the number of Steiner points
required to quadrangulate more general triangulated domains, such as triangulated
polygons with holes or triangulated sets of line segments.
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