Proof of Ore's Theorem by Backwards Induction

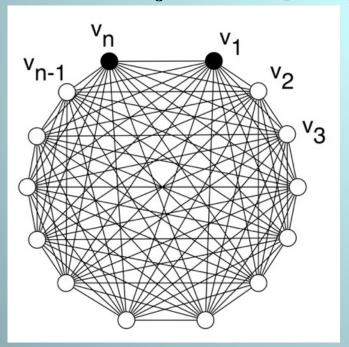
Godfried Toussaint

Ore's Theorem – Combining Backwards Induction with the Pigeonhole Principle

Let G = (V, E) be a connected simple graph with $n \ge 3$ vertices. If G has the property that for each pair of non-adjacent vertices $u, v \in V$, we have that $\deg u + \deg v \ge n$ then G contains a Hamiltonian cycle.

Proof: by backwards induction on the number of edges in *E*:

Base case: G_{C} is the complete graph with n(n-1)/2 edges.

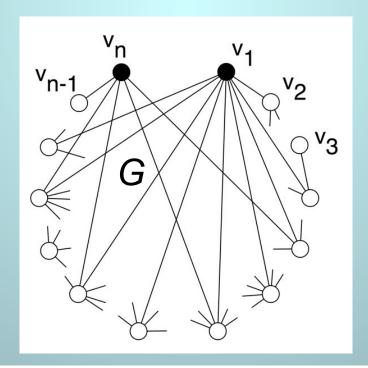


Connect the vertices in $G_{\rm C}$ in any order such as $(v_1, v_2, ..., v_{\rm n})$ to create a Hamiltonian path, and add edge $(v_{\rm n}, v_1)$ to create a Hamiltonian cycle.

Ore's Theorem – Combining Backwards Induction with the Pigeonhole Principle

Induction hypothesis: the theorem is true when G has k edges.

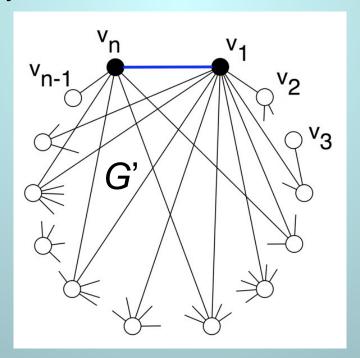
- We must prove the theorem when G has k-1 edges.
- Let *G* be such a graph, and let v_n and v_1 be a pair of non-adjacent vertices in *G* such that $\deg v_n + \deg v_1 \ge n$.



Ore's Theorem - Combining Backwards Induction and the Pigeonhole Principle

Induction hypothesis: the theorem is true when G has k edges.

- Let G' be the graph obtained by adding an edge between v_n and v_1 in G. G' therefore has k edges.
- It follows from the induction hypothesis that G' contains a Hamiltonian cycle.

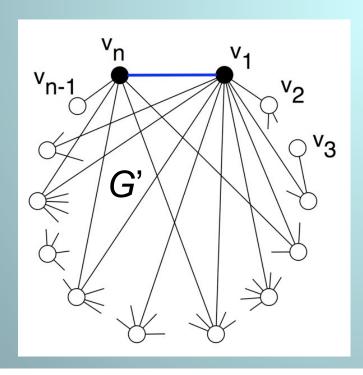


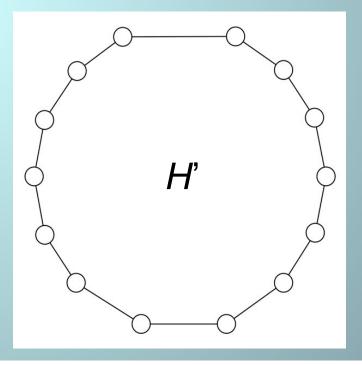
Ore's Theorem – Combining Backwards Induction and the Pigeonhole Principle

Let H' be the Hamiltonian cycle in G'.

We must now remove the edge (v_n, v_1) from G' to restore G. Two cases arise:

Case 1: H' does not contain (v_n, v_1) . Then H' is a Hamiltonian cycle in G, and we are done. Edge (v_n, v_1) may be safely removed from G'.

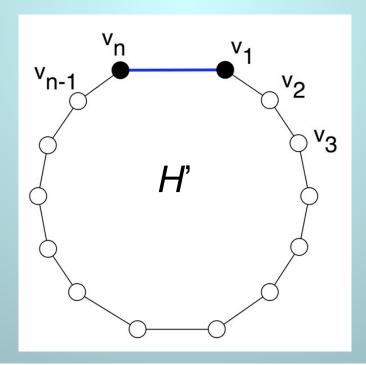




Ore's Theorem – Combining Backwards Induction and the Pigeonhole Principle

Case 2: H' contains (v_n, v_1) .

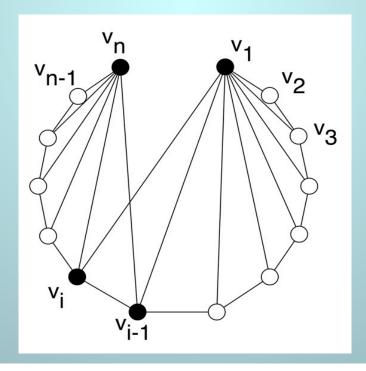
- •Without loss of generality let H' = $(v_1, v_2, ..., v_n, v_1)$.
- •Delete the edge (v_n, v_1) from G' to recover G.



Ore's Theorem - Combining Backwards Induction and the Pigeonhole Principle

Case 2: continued...

Since $\deg v_n + \deg v_1 \ge n$ it follows from the Pigeonhole Principle that here must exist vertices v_{i-1} and v_i such that v_{i-1} is connected to v_n and v_i is connected to v_1 .



Ore's Theorem – Combining Backwards Induction and the Pigeonhole Principle

Case 2: continued...

Therefore *G* contains the Hamiltonian cycle $H = (v_1, v_2, \dots, v_{i-1}, v_n, v_{n-1}, v_{n-2}, \dots, v_i, v_1)$. Q.E.D.

