Introduction to Random Variables

Godfried Toussaint

Random Variables and Probability Distributions

- A random variable X is a function of a subset of the outcomes of a set of random experiments. As such a random variable may also be a function of other random variables. Typically it associates a number with each outcome of the sample space (S, P).
- The *probability distribution* of a random variable is the collection of all the possible values that it can take, along with their probabilities:

Continuous case Probability density function

Random Variables: Examples

Let (S, P) be the sample space of rolling a pair of dice. Let X
be the sum of the two numbers obtained when the dice are
rolled. X is a random variable:

$$X[(1, 2)] = 3$$
 $X[(5, 3)] = 8$ $X[(6, 6)] = 12$ etc.

• Let (S, P) be the sample space of tossing 10 coins. Let X_H be the random variable #Heads, and X_T be the #Tails. Let X be the random variable $X_H - X_T$.

$$X_H(HTHTHTTHTTT) = 5$$
 $H_T(HTHTHTTTTTTT) = 7$
 $X = X_H - X_T = -2$

Bernoulli Trials: Tossing an Unfair Coin

- Let (S, P) be the sample space of tossing an unfair coin 5 times. Assume the tosses are independent.
- $S = \{HEADS, TAILS\}$ and P(HEADS) = p and P(TAILS) = 1-p
- The probability of observing some sequence such as: HEADS, TAILS, HEADS, TAILS, HEADS is:

$$P(HTHTH) = P(H)P(T)P(H)P(T)P(H)$$
$$= p \cdot (1-p) \cdot p \cdot (1-p) \cdot p$$
$$= p^{3}(1-p)^{2}$$

Binomial Random Variables

- Let (S, P) be the sample space of tossing an unfair coin n
 times. Assume the tosses are independent.
- Let X denote the random variable that counts the number of heads, and h be an integer $0 \le h \le n$. What is the probability P(X = h)?
- There are exactly $\binom{n}{h}$ sequences of n flips with exactly h heads.
- Therefore $P(X = h) = \binom{n}{h} p^h (1-p)^{n-h}$
- *X* is called a binomial random variable because it is a term in the expansion of the binomial $(p + q)^n$ where q = 1 p.

Independent Random Variables

 Let (S, P) be a sample space and let X and Y be two random variables defined on (S, P). Then X and Y are independent provided that for all values a and b we have:

$$P(X = a \text{ and } Y = b) = P(X = a)P(Y = b)$$

Dependent Random Variables

• Let (S, P) be a sample space and let *X* and *Y* be two random variables defined on (S, P). Then *X* and *Y* are *dependent* provided that for some values *a* and *b* we have:

$$P(X = a \text{ and } Y = b) \neq P(X = a)P(Y = b)$$

Expectation (mean, average, μ)

• Let *X* be a real-valued random variable defined on a sample space (*S*, *P*). The expectation (or the expected value) of *X* is:

$$E(X) = \sum_{s \in S} X(s)P(s)$$

• Example: Let *X* denote the number rolled by a die. What is the expected value of *X*?

Expectation (mean, average, μ)

 Let X be a real-valued random variable defined on a sample space (S, P). The expectation (or the expected value) of X is:

$$E(X) = \sum_{s \in S} X(s)P(s)$$

Example: Let X denote the number rolled by a die. What is the expected value of

$$E(X) = \sum_{a=1}^{6} X(a)P(a)$$

$$= X(1)P(1) + X(2)P(2) + X(3)P(3) + X(4)P(4) + X(5)P(5) + X(6)P(6)$$

$$= 1(1/6) + 2(1/6) + 3(1/6) + 4(1/6) + 5(1/6) + 6(1/6)$$

$$= 21/6$$

$$= 7/2$$

$$= 3.5$$

Linearity of Expectation

 Let X and Y be real-valued random variables defined on a sample space (S, P). Then

$$E(X+Y) = E(X) + E(Y)$$

Proof: Let Z = X + Y.

$$E(Z) = \sum_{s \in S} Z(s)P(s)$$

$$E(Z) = \sum_{s \in S} [X(s) + Y(s)]P(s)$$

$$E(Z) = \sum_{s \in S} [X(s)P(s) + Y(s)P(s)]$$

$$E(Z) = \sum_{s \in S} X(s)P(s) + \sum_{s \in S} Y(s)P(s)$$

$$E(Z) = E(X) + E(Y)$$

Linearity of Expectation - continued

• Let X and Y be real-valued random variables defined on a sample space (S, P). Let a , b, and c be constants. Then

1.
$$E(cX) = cE(X)$$

2.
$$E(aX+bY) = aE(X) + bE(Y)$$

3. and

$$E(c_1X_1 + c_2X_2 + ... + c_nX_n) = c_1E(X_1) + c_2E(X_2) + ... + c_nE(X_n)$$

Product of Random Variables

• Let (S, P) be the sample space of tossing a fair coin twice. Let X_H be the number of HEADS and X_T the number of TAILS. Let $Z = X_H X_T$.

• Then
$$E(X_H) = E(X_T) = 1$$

• And
$$E(Z) = \sum_{a \in S} aP(Z = a)$$

$$= 0 \cdot P(Z = 0) + 1 \cdot P(Z = 1)$$

$$= 0 \cdot \left(\frac{2}{4}\right) + 1 \cdot \left(\frac{2}{4}\right)$$

X ₁	X ₂	X _H	X _T	Z
Т	Т	0	2	0
Н	Т	1	1	1
Т	Н	1	1	1
Н	Н	2	0	0

• Therefore sometimes $E(X_HX_T) \neq E(X_H)E(X_T)$.

Product of Random Variables - continued

• Let *X* and *Y* be independent, real-valued random variables defined on a sample space (S, P).

• Then
$$E(XY) = E(X)E(Y)$$
.

Proof: homework.

Measures of Central Tendency and Estimators of Location

- The mean average expected value
 - Arithmetic mean: $(a^1 + a^2 + ... + a^n)/n$
 - Geometric mean: $(a^1a^2 \cdots a^n)^{1/n}$
- The median a robust estimator
 - Deleting outliers
- Higher dimensional analogues?

Measures of Central Tendency and Estimators of Location

- The mean average expected value
 - Arithmetic mean: $(a^1 + a^2 + ... + a^n)/n$
 - Geometric mean: $(a^1a^2 \cdots a^n)^{1/n}$
- The median a robust estimator
 - Deleting outliers
- Higher dimensional analogues
 - Mean of each dimension
 - Onion peeling

Onion Peeling

The Arithmetic Mean – Geometric Mean Inequality: Induction Proof

The Arithmetic-Geometric mean inequality: if $a_1, a_2, ..., a_n > 0$,

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

where the equality holds if, and only if, all the a_i 's are equal.

Base Case: For n = 2 the problem is equivalent to

 $(a_1 + a_2)^2 \ge 4a_1a_2$, which is equivalent to $(a_1 - a_2)^2 \ge 0$.

Or alternately expand:
$$\left(\sqrt{a_1} - \sqrt{a_2}\right)^2$$

Kong-Ming Chong, "The Arithmetic Mean-Geometric Mean Inequality: A New Proof," *Mathematics Magazine*, Vol. 49, No. 2 (Mar., 1976), pp. 87-88.

The Arithmetic Mean – Geometric Mean Inequality: Induction Proof – *continued...*

Induction Hypothesis: Assume the statement is true for n-1.

Proof: Without lost of generality assume that

$$a_1 \le a_2 \le \dots \le a_n$$

Let G be the geometric mean $G := \sqrt[n]{a_1 a_2 \cdots a_n}$. Then it follows that

 $a_1 \leq G \leq a_n$. Note that since

$$a_1 + a_n \ge \frac{a_1 a_n}{G} + G$$

$$a_1 + a_n - G - \frac{a_1 a_n}{G} = \frac{a_1}{G}(G - a_n) + (a_n - G) = \frac{1}{G}(G - a_1)(a_n - G) \ge 0$$

The AG-Mean Inequality Induction Proof – continued...

By the induction hypothesis

$$\frac{a_2 + \dots + a_{n-1} + \frac{a_1 a_n}{G}}{n-1} \ge \sqrt[n-1]{G^n/G} = G$$

Hence

$$a_2 + \dots + a_{n-1} + \frac{a_1 a_n}{G} \ge (n-1)G$$

and

$$\frac{a_2 + \dots + a_{n-1} + \frac{a_1 a_n}{G} + G}{n} \ge G$$

But since

$$a_1 + a_n \ge \frac{a_1 a_n}{G} + G$$

it follows that

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge G$$

Measures of Variability or Spread: Variance

• Let X be a real-valued random variable defined on a sample space (S, P). Let $\mu = E(X)$. Then the variance of X is:

Var(X) = E[(X -
$$\mu$$
)²]
= E[(X - μ)(X - μ)]
= E[X² - 2 μ X + μ ²]
= E[X²] - E[2 μ X] + E[μ ²]
= E[X²] - 2 μ E[X] + μ ²
= E[X²] - 2 μ ² + μ ²
= E[X²] - E[X]²

- The standard deviation σ is the square root of the variance.
- The range of X: maximum value of X minimum value of X.