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early theory of human visual perception put forward by Hofstaetter [Ho39] held that discrimination
of shape was a result of direct computation of the various moments of the shape by some neural
network in the visual cortex.
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puting moment invariants can be found in [Ch93], [BF86], [SNA90] and [Si93].

6. Moments for Preprocessing

For a method of normalizing hand printed characters see [Ca70].

7. Generalizations of & as Predictors of Discrimination Performance

In a recent paper Ball [Ba73] proposed and investigated a generalization of the notion of 7.
From the observation that s signifies the ratio of the circumference to diameter of a circle, and the
fact that this ratio is independent of the size of a circle, he defined a generalization of & for an ar-
bitrary shape as

pi;(shape) = perimeter of shape / width of shape,

where the width of a shape he defined as the maximum value of the distance between two points
on its boundary (this is more commonly termed the diameter of the shape). To obtain the pleasing
property that pi;(shape) takes on a maximum value for a circle, Ball had to restrict himself to con-

vex shapes.

Other generalizations of m, some of which have the nice property of taking one of their ex-
treme values for the circle and which are not restricted to convex shapes, are possible [To74]. One
such generalization is given by

piy(shape) = P?/4A,

where P and A are the perimeter and the area of the shape, respectively. Two additional generali-
zations are given by:

piz(shape) = A/2I and
pis(shape) = P/2(21)"2,

where [ is the moment of inertia of the shape, assumed to have unit mass, taken about a perpendic-
ular axis through its center of mass. For a circle /=A/2n and hence pis(shape) and piy(shape) reduce

to 7t . These measures find application to psychology [AA56], [Zu65], [Zu70] and in machine clas-
sification of shapes [Al62].

In the psychology literature these measures are known as gestalt variables, i.e., variables
which do not provide a description from which the shape can be re-constructed, but which do ab-
stract important information or characteristics of the shape as a whole. The gestalt variable

piy(shape) = P?/4A has been attractive in ordering shapes along a compactness-dispersion contin-

uum, not only because it is size-invariant, but because it may also be easily transformed in various
ways to suit the user.

The measures piz(shape) and piy(shape) belong to a much larger class of moment invariants

which have been investigated by researchers interested in perception by animals, humans and ma-
chines. In psychology they are used as predictors of discrimination performance [Zu65]. In fact, an
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ments can be made invariant to stretching, squeezing and dilation by computing the following:

i - 35 B

X y

For efficient algorithms for computing moments see [JB91] and [LS91] as well as [Za87].
For efficient parallel algorithms see [Ch90] but with a corrected complexity analysis in [Pa91].

Another very efficient approach to computing the area moments of a shape is to approxi-
mate the boundary of the shape by a polygon and to compute the area moments using simple for-
mulae that depend only on the coordinates of the vertices of the approximating polygon [St86],
[Bo89], [Le91]. Typically the number of such vertices is far fewer than the number of pixels in the
original shape that are used in standard methods.

5. Moments of Perimeter

In the moments of area all the pixels of a pattern are used in the computation. However, it
is reasonable to suspect that since discrimination information lies more on the boundary of a pat-
tern than in its interior portions [AAS56], satisfactory results may be obtained by using only pixels
on the perimeter or boundary of the shape. Indeed psychologists have determined that the second,
third and fourth moments of the perimeter of a shape are powerful predictors of discrimination per-
formance [Zu70]. Accordingly, we may compute the moments of a spatially differentiated picture
g'(x,y) (for example the magnitude of the gradient of the picture) instead of the original picture
g(x,y) to obtain the moments of perimeter:

myy = [xPyi[g'(x, y)ldxdy

Alternately, if the gradient has been thresholded to a binary picture in which the black pix-
els are the resulting boundary pixels, the moments can then be computed using only the black pix-
els resulting in considerable savings in computation since the number of computations is now not
proportional to the size of the picture nor the area of the pattern but rather the perimeter of the pat-
tern.

If the shape is given as a simple polygon or a chain code then efficient algorithms for com-
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[Hu62]. Here we describe the main ideas for the discrete case.

Accordingly, let the two dimensional pattern or visual scene be represented as an n by n
square array of grey level pixels. The pixels are assumed to have unit height and width and there-
fore their grey level can be specified by their integer coordinates x;, y, t=1, 2...., n. The jk-th mo-

ments therefore become:
n n

M= 3 3 @) 0) F(y)

l=1m=1

forj,k=0,1,2,3,etc.

If we assume further for simplicity that the pixels are binary valued and take on the values zero and
one then we have:

My = ;uﬂy)"

where the summation extends over all the elements in A, i.e., all the “black” pixels or “ones” in the
array. Note that we have dropped the subscripts from x;, y;, so that we have just plain x and y rep-

resenting the coordinates of the pixels.

With this framework it is now possible, by suitably combining different moments, to design
(define) shape features or measurements that are invariant to certain affine transformations. Such
features however are not invariant to some typical kinds of noise such as “salt-and-pepper” noise.

From the previous equation we see that M, = the area of the pattern, i.e., the number of

black pixels. Let us denote the area by A. The center-of-gravity (also called average or arithmetic
mean) of the pattern is given by x = M,o/Myy and y = My;/M. The moments become invariant to

translation when they are computed with respect to the center of gravity, i.e.,
J— _ i _ k
Mj = ;(x—X)’(y—y)

These moments need not be computed from “scratch™ if the fundamental moments M;y and
other lower order moments are known. The reader should verify for example that M,y = My -

(M10)* /Mg and My = My - (Mo;)*/Myg,

Consider the standard deviation in the x direction of a set of black pixels:

Since M = M,y it follows that:

Analogous expressions hold for the standard deviation in the y direction. Therefore the mo-
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ible 2 by 2 matrix A and a vector b such that, for all points p(x,y) in R?, T(p(x,y))=Ap +b.

Let us examine this definition in more detail. We have that:

{T(x)} _ |91 %12 H + b,
r(y) ay an| |y
Multiplying A by p(x,y) we obtain:

T(x) = ayx+apy+b;

T(y) = ayx+ayy+b,

Now it is easy to see that forA = {1 0} and b,;=b, we obtain the translations.
01
ForA = | 0} and b;=b,=0 we obtain the dilations.
0a
a, 0 . . :
ForA = and b;=b,=0 we obtain stretching and squeezing.
0 a,,

For A = {1 alz} and b;=b,=0 we obtain shearing.
01

4. Moments of Area

Consider now a two dimensional light intensity function g(x,y) (the pattern or visual input)
normalized so that the volume under the function is equal to one. For our purposes it then behaves
just like a bi-variate probability density function. For such a function of two variables the moments
are defined as follows:

ik
mie = [[x'y"f(x, y)dxdy
forj,k=0,12,...

In this way we now are able to obtain a countably infinite number of shape measurements
for describing g(x,y). As in the one dimensional case, an infinite number of measurements yields
an impractical system. Luckily, in practice, even if the shape of g(x,y) is quite complicated not
many moments are needed to adequately describe it. For a detailed description of the theory re-
quired to obtain such moments that are invariant to affine transformations as well as rotations see
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Fig. 2.1 A pattern P and three of its collapsing projections on the x, y and x+y axes.

tions [MMS63].

3. Affine Transformations

Consider designing a character recognition system for machine printed characters. Two
characters such as A and A are still considered A’s and therefore quite similar even though one is
bigger than the other. Such patterns would still be considered A’s even if they differed in location,
stretching, squeezing, and shearing. Rotation is a rather special transformation and depending on
the context it may or may not be desirable to treat patterns that are invariant under rotation as be-
longing to the same pattern class. This may result, for example, in the system’s inability to discrim-
inate between M and W or p and d. Transformations such as these are special cases of affine trans-

formations and are treated in detail in [Ry86]. Let R? denote the two-dimensional Euclidean plane.

Definition: A mapping 7 of R? onto R? is called an affine transformation if there exists an invert-
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quickly noticed that different shapes had different formulas and gave different values even if the
shapes had the same height, width or area. He was now getting excited. He turned to the next page
and was electrified. Here was a page full of letter shapes, exactly his field of interest. In the book
they were called I-beams, X-beams and L-beams and what have you, but to him they were just let-
ters of the alphabet and they all had their formulas for the moments. Sigfried realized he had stum-
bled on a new and different method for extracting shape features from patterns. He put the dynam-
ics book back on the shelf, kissed his worn-out paperback copy of de Bono’s Lateral Thinking and
rushed back to his office to tell his room mate he had found a topic for his thesis, feature extraction
for character recognition by the method of moments.

2. Moments of Marginal Distributions or Collapsing-Projections

Consider a one dimensional function g(x) normalized so that the area under the curve is
equal to one. For our purposes it then behaves just like a probability density function. Also let us
consider not the variance of x but the resulting expression one obtains when we remove u from the
equation yielding

E[(x)°] = [(x)g(x)dx

This expression is seen to be quite similar to that of E[x], the only difference being the pres-

ence of the number two. We call E[x] and E [xz] the first and second moments of g(x). In fact, we
can generalize this notion and define the k-th moment of g(x), for k=1,2,... as

my = [(x)g(x)dx

In this way we now are able to obtain a countably infinite number of shape measurements
for describing g(x). Of course an infinite number of measurements yields an impractical system.
Luckily, in practice, even if the shape of g(x) is quite complex compared to the bell-shape of a
Gaussian density function, not many moments are needed to adequately describe it and it is this
property of the moments as well as their application-independent generality that makes them attrac-
tive.

How can we use the above-mentioned moments of one-dimensional functions to describe
the shape of two-dimensional patterns? One way is to obtain from the two-dimensional pattern, one
or more collapsing projections of the pattern onto carefully chosen axes. In psychology this ap-
proach is referred to as the marginal distribution approach to visual form perception [Zu70]. This
approach is illustrated in Fig. 2.1 where the pattern P is shown along with three collapsed projec-
tions onto axes parallel to the x-axis, y-axis and x+y axis. The collapsed projection along an axis
can be viewed as a function that describes the length of the line segments obtained by intersecting
lines orthogonal to the axis with the pattern P. Once a few of these collapsed projections are ob-
tained, each of them can be normalized so that they resemble one-dimensional probability density
functions (or distributions in the discrete case) and the moments of these distributions can then be
computed. Sutherland [Su57] has conjectured that the visual system of the octopus contains a neu-
ral network that works in this manner with only fwo axes of projection, the vertical and the hori-
zontal. The retina of the octopus thus favors discrimination along the vertical and horizontal direc-
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MOMENTS OF INERTIA OF COMMON GEOMETRIC SHAPES
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Fig. 1.1 A page from a book on dynamics.

much help. De Bono described various algorithms in his book that one could use to invoke the mag-
ic powers of randomness. Sigfried decided to browse through books in the library and adhering
strictly to de Bono principles, by flips of the coin ended up in the engineering library. He was pre-
pared to search even the Islamic Studies Library had the coins dictated such an outcome but he was
pleased with the result. Another flip of the coin directed him to the civil engineering section and
he hesitated but reminded himself to give de Bono an un-challenged chance. A further flip of the
coin led him to open a book on dynamics and at this point he was visibly worried. Persistently and
with an open mind he skimmed through the pages until his attention was suddenly and forcefully
drawn to a page with figures such as those in Fig. 1.1. There under the title Moments if Inertia of
Common Geometric Shapes were all sorts of shapes such as squares, triangles and circles with
mathematical formulas printed next to them from which to calculate rotational moments of inertia
about several different axes on the plane as well as points or axes orthogonal to the plane. Sigfried
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CHAPTER 11

MOMENTS
Godfried Toussaint

ABSTRACT

This chapter introduces the basic principles behind the use of moments in various
aspects of the pattern recognition problem.

1. Introduction

A graduate student named Sigfried in the 1970°s was preparing to do research in character
recognition for his masters thesis. He was aware of a variety of techniques described in the litera-
ture for extracting descriptors of shape, such as the contour tracing based methods used at M.I.T.
for the design of reading machines for the blind, and he wanted to come up with something diffe-
rent. Sigfried had one year earlier been exposed to a course on communication theory and had some
knowledge about random variables and Gaussian noise. He was familiar with some probability the-
ory and knew what a probability density function was. He knew that the Gaussian (sometimes
called normal) probability density function of one variable, say x, had a nice curvy “bell-shaped”
form and that it was given by the expression:

o = e [454)

for which,

E[x] = fxp(x)dx =u
and

E[(x-w)?] = [(x=w)’p(x)dx = o

where u and 62 are two parameters referred to as the mean and the variance. The mean is the ex-

pected value of x denoted by E[x] and the variance is the expected value of (x —u)? . Sigfried also
knew that the form of this bell-shaped function was completely determined by precisely and only
these two parameters. Nevertheless, he had totally overlooked any possibility that two-dimensional

counterparts and generalizations of such measures as w and 02 might serve as ideal shape descrip-
tors of bivariate probability density functions which in this context are better interpreted as a light
intensity functions.

Sigfried had just read a couple of books on lateral thinking by Edward de Bono [Bo70],
[Bo71], (see also the later edition [Bo78]). One of the principles of lateral thinking is to use ran-
domness to arrive at new ideas and Sigfried decided to give this method a try in relation to finding
a topic of research for his thesis since his advisor was too busy writing his own papers to be of
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